Equal Prices, Unequal Access

The Effects of National Pricing in the Life Insurance Industry

Derek Wenning Princeton University

January 26, 2024

- ◊ Regulators may try to promote financial inclusion through pricing restrictions
 - Examples: interest rate caps, fixed-rate disaster lending, ACA ratings areas
 - Caveat: firms may respond by limiting access to products

- ◊ Regulators may try to promote financial inclusion through pricing restrictions
 - Examples: interest rate caps, fixed-rate disaster lending, ACA ratings areas
 - Caveat: firms may respond by limiting access to products
- ◊ This paper: national pricing restrictions → geographic adjustment in life insurance

Regulators may try to promote financial inclusion through pricing restrictions

- Examples: interest rate caps, fixed-rate disaster lending, ACA ratings areas
- Caveat: firms may respond by limiting access to products
- ◊ This paper: national pricing restrictions → geographic adjustment in life insurance

What are the distributional effects of national pricing?

- ... across households? ... across locations? along each margin?
- ... along each margin?

- ♦ Collect a <u>new</u> dataset linking life insurance companies to local agents
 - Document spatial heterogeneity in availability and quality of local life insurers

- ◊ Collect a <u>new</u> dataset linking life insurance companies to local agents
 - Document spatial heterogeneity in availability and quality of local life insurers
- ♦ Build a spatial model of multi-region insurers facing heterogeneous local demand elasticities
 - Replicates spatial sorting patterns in the data
 - Under national pricing: lower markups \rightarrow fewer agents \rightarrow lower access
 - Provide a welfare decomposition that highlights both pricing and access margin effects

- Collect a <u>new</u> dataset linking life insurance companies to local agents
 - Document spatial heterogeneity in availability and quality of local life insurers
- ♦ Build a spatial model of multi-region insurers facing heterogeneous local demand elasticities
 - Replicates spatial sorting patterns in the data
 - Under national pricing: lower markups \rightarrow fewer agents \rightarrow lower access
 - Provide a welfare decomposition that highlights both pricing and access margin effects
- ♦ Estimate the national pricing equilibrium, compare to the flexible pricing equilibrium
 - Compensating differentials: how much \$ to give households to equate welfare to optimal location?

 \diamond Need to give \$351-\$506/yr to households in poorest decile of CZs under flexible pricing

- $\,\sim$ 0.41-0.95% of yearly wage
- Access margin accounts for 82-94% of differentials

♦ Need to give \$351-\$506/yr to households in poorest decile of CZs under flexible pricing

- $\,\sim$ 0.41-0.95% of yearly wage
- Access margin accounts for 82-94% of differentials

♦ National pricing <u>amplifies</u> spatial inequality for poor households, <u>dampens</u> for rich households

- Poorest locations: low-income hh's lose additional 10/yr, high-income hh's gain 16/yr
- Low-income effects dominated by access margin

♦ Need to give \$351-\$506/yr to households in poorest decile of CZs under flexible pricing

- $\,\sim$ 0.41-0.95% of yearly wage
- Access margin accounts for 82-94% of differentials

♦ National pricing <u>amplifies</u> spatial inequality for poor households, <u>dampens</u> for rich households

- Poorest locations: low-income hh's lose additional 10/yr, high-income hh's gain 16/yr
- Low-income effects dominated by access margin

 $\diamond~$ Complementary place-based policy \rightarrow subsidize $\underline{revenues}$ in poor locations, tax rich locations

- Poorest locations: low-income hh's gain 50/yr, high-income hh's gain 100/yr
- Welfare inequality \downarrow by 10-20% depending on policy scale

♦ National/Uniform Pricing

Finance: Finkelstein & Poterba (2004, 2006), Hurst, Keys, Seru, & Vavra (2016), Fang & Ko (2020), Begley et al (2023) Retail: Cavallo, Neiman, & Rigobon (2014), DellaVigna & Gentzkow (2019), Adams & Williams (2019), Anderson, Rebelo, & Wong (2019), Butters, Sacks, & Seo (2022), Daruich & Kozlowski (2023)

\star Contribution: endogenous location decisions and access margin welfare effects

◊ Geographic organization of firms

Jia (2008), Holmes (2011), Ramondo and Rodríguez-Clare (2013), Behrens et al. (2014), Tintelnot (2016), Gaubert (2018), Ziv (2019), Oberfield, Rossi-Hansberg, Sarte, & Trachter (2023), Kleinman (2022), Oberfield, Rossi-Hansberg, Trachter, & Wenning (2023)

\star Contribution: effect of pricing restrictions on organization

◊ Financial inclusion

Buera, Shin, & Kaboski (2011, 2015, 2021), Celeriér & Matray (2019), Beraja, Fuster, Hurst, & Vavra (2019), Cox, Whitten, & Yogo (2022), Lurie & Pearce (2021), Ji, Teng, & Townsend (2022), Brunnermeier, Limodio, & Spadavecchia (2023)

* Contribution: structural approach, life insurance sector

The Geography of the US Life Insurance Industry

- 1. Institutional setting
- 2. Data construction
- 3. Stylized facts

1. Regulators do not allow life insurance firms to price on geographic identifiers

- Can price on: age, gender, health, smoking, + lifestyle activities
- Cannot price on: geography, income, racial demographics

2. Life insurance sales come primarily from local insurance agents

- 90% of total life insurance sales in 2022 went through agents, only 6% online [LIMRA, 2023]
- 73% of households in 2016 had purchased life insurance in-person
- Of those with no insurance, 35% due to no agent interaction, 50% due to product complexity

◊ Agent Location Data (New!) – NAIC State-Based Systems

- 18 states, 280 commuting zones, $\approx 30\%$ of the population
- 210k local agents, >1m agent-insurer pairs
- Agent business zipcode \rightarrow aggregate to CZ
- ◊ Insurance Prices Compulife
 - Life insurance prices used directly by agents
 - Use 10-year term-life premiums for non-smoking 40 year olds in regular health
- ◊ Balance Sheet Data A.M. Best Financial Suite
 - State-level premiums (sales), liabilities, leverage, ratings, ownership structure
- ♦ Market Fundamentals ACS 2016-2020
 - Household population, population by income bracket
 - High-income households = income > $75,000 \ (\approx 2020 \ \text{median})$

Fact 1: Insurers Are Not Active in Every Commuting Zone

Fact 2: Poor CZs Have Fewer Local Agents and Insurance Options

Fact 2: Poor CZs Have Fewer Local Agents and Insurance Options

(a) Agents/1k Households

(b) Active Insurers

(c) Insurers/Agent

Fact 3: Poor CZs Have Lower Quality Local Insurers on Average

- 1. Insurers are segmented across commuting zones
- 2. Poorer commuting zones have fewer local insurance options
- 3. Larger and higher-quality insurers are less active in poor markets

A Spatial Model of Life Insurance Distribution

- 1. Model Setup
- 2. Segmentation and spatial sorting
- 3. Effects of national pricing

- ♦ Households (i): Discrete choice over set of available insurers and outside savings option
 - Two income types: low (ℓ) and high (h) income
 - Funds spent on insurance/savings: $B_\ell < B_h$
- \diamond Locations (s): population N_s, high-income population share η_s
- \diamond **Insurers** (*j*): Hire local sales agents to acquire local customers, set prices

♦ Household *i* of type $k \in \{\ell, h\}$ chooses insurer/outside savings option according to

$$u_{is}^{k} = \max_{j \in \mathcal{J}_{is} \cup \{o\}} \underbrace{\log \iota_{k}}_{\substack{\text{value of} \\ \text{insurance}}} + \underbrace{\log \omega_{j}}_{\substack{\text{unsure } \\ \text{quality}}} - \underbrace{(\varepsilon_{k} - 1) \log \rho_{js}}_{\substack{\text{distaste} \\ \text{for prices}}} + \underbrace{\nu_{ij}}_{\substack{\text{taste} \\ \text{shock}}}, \qquad \nu_{ij} \sim \mathsf{EV1}(0, 1)$$

♦ Expositional assumption: $\varepsilon_h > \varepsilon_\ell$ (will verify in estimation)

 \diamond Aggregating within location *s*, insurer *j* demand from type *k* households:

- ♦ Demand shifter D_{is}^k : local expenditures, preferences, local price index (P_s^k)
- Match probability κ_{js}: endogenous insurer decision, determines local access

 $\diamond\,$ Household-insurer match probability governed by a function:

$$\kappa_{js} \equiv \kappa (\overbrace{\begin{array}{c} \text{insurer choice} \\ \text{(+)} \end{array}}^{\text{insurer choice}}; \ \overbrace{j's \text{ productivity, } s's \text{ population}}^{\text{model fundamentals}}$$

♦ Household-insurer match probability governed by a function:

$$\kappa_{js} \equiv \kappa (\overbrace{\text{local agents } a_{js}}^{\text{insurer choice}} ; \ \overbrace{j' \text{s productivity, } s' \text{s population}}^{\text{model fundamentals}}$$

Agent Costs:

- 1. Span of control costs, $C_j(a_j)$ (managerial cost of employing many agents)
- 2. Local per-agent hiring costs, f_s (local search costs, office space, cost of leads)

$$\Pi_{j}(\mathcal{P}) = \max_{\mathbf{a}_{j}, \mathbf{p}_{j}} \sum_{s \in S} \left[\underbrace{\underbrace{(p_{js} - \xi_{j})}_{\text{local variable profits}} \left(Q_{s}^{\ell}(p_{js}, \kappa_{js}(a_{js})) + Q_{s}^{h}(p_{js}, \kappa_{js}(a_{js}))\right)}_{\text{local variable profits}} - \underbrace{f_{s} a_{js}}_{\text{hiring}}\right] - \underbrace{C_{j}(\mathbf{a}_{j})}_{\text{span of control}}$$
s.t. $\mathbf{a}_{j} \ge 0, \ \mathbf{p}_{j} \in \mathcal{P}$

 \diamond Choose vector of prices \mathbf{p}_j and local agents \mathbf{a}_j to maximize profits

 \diamond Pricing decisions subject to regulatory regime \mathcal{P} : national or flexible pricing

Definition: Industry Equilibrium

Given local fundamentals $\{N_s, \eta_s, f_s\}_{s \in S}$, household fundamentals $\{\iota_k, \varepsilon_k, B_k\}_{k=\ell,h}$, insurer fundamentals $\{\theta_j, \omega_j, \xi_j\}$, and pricing restrictions \mathcal{P} , an industry equilibrium is such that

- 1. Households' discrete choice consistent with utility maximization
- 2. Insurers maximize their profits given local price indices, $\{P_s^h, P_s^\ell\}_s$
- 3. Local price indices are consistent with insurers' optimal choices $\{\kappa_j, \boldsymbol{p}_j\}_j$

♦ Assume $\kappa_{js}(a) = \tilde{\kappa}_s(\theta_j a)$. Optimality implies

Optimal number of (productivity-adjusted) agents is

- increasing in local profitability and productivity
- decreasing in hiring and span of control costs

 \diamond No Inada condition on $ilde\kappa_s(\cdot) o a_{js}^* = 0$ in <u>low profitability</u> and <u>high cost</u> locations

 \diamond Two insurers with $\theta_j > \theta_{j'}$, all else equal. Relative optimality condition:

Two Extremes:

- \diamond If $f_s \rightarrow 0$, relative agents governed by differences in span of control: $\theta_{j'}a_{j's} > \theta_j a_{js}$
- \diamond If $f_s \to \infty$, relative agents governed by differences in productivity: $\theta_{j'}a_{j's} < \theta_j a_{js}$

Proposition 1: Sorting When Hiring Costs Increase With Local Income

Estimating the National Pricing Equilibrium

- 1. Price elasticities and insurer quality
- 2. Insurer parameters (SMM)
- 3. External validity

 \diamond To first order, log sales of firm j in state s are

$$\log S_{js} = \underbrace{\log a_{js} + \log \theta_j}_{\text{match probability}} + \underbrace{\log \omega(\boldsymbol{X}_j)}_{\text{demand components}} - \underbrace{(\varepsilon_{\ell} - 1) \log p_j}_{\text{baseline elasticity}} - \underbrace{(\varepsilon_{h} - \varepsilon_{\ell}) \chi_s^h \log p_j}_{\text{relative elasticity}} + \mathsf{FE}_s$$

◊ Prices are 10-year term life premiums for 40 y.o.s scaled by actuarial value

- Instrument 1: variable annuity losses and reserve valuation [Koijen Yogo 2022]
- Instrument 2: annuity prices of insurers from 2009 [Hausman Leonard Zona 1994]
- ♦ Model demand components as log linear in firm characteristics
 - Characteristics: log liabilities, financial rating, return on equity, stock indicator
| - | VA Losses IV | | | Hausman et al IV | | |
|---|-------------------|-------------------|-----------------|--------------------------|---------------------|-------------|
| $egin{array}{ll} 1-arepsilon_\ell\ arepsilon\ arepsi$ | -2.234
-2.708* | -3.154
-2.038* | -1.828^{**} | -1.182
-2.882^{***} | -0.304
-2.541*** | -2.701*** |
| Agents
$	heta_j$ proxy
Ins-Year FE | | ~ | ~ | ~ | ✓
✓ | ✓
✓ |
| Obs
R ² | 11,326
0.16 | 10,784
0.17 | 12,190
-0.01 | 949
0.29 | 949
0.75 | 949
0.09 |
| F | 129.3 | 146.6 | 484.7 | 36.5 | 56.9 | 115.6 |

Note: *p < 0.1, **p < 0.05, ***p < 0.01. SEs clustered at firm-year level.

- \diamond Invert productivities and marginal costs $\{m{ heta}_j, m{\xi}_j\}$ and preferences $\{\iota^h, \iota^\ell\}$
 - Insurer parameters: optimal prices and optimal agent conditions
 - Preferences: aggregate participation rates for each income group
 - Savings to allocate $\{B_k\}$: 1.5% of yearly income
- ♦ Parametrize $\{\{f_s\}, \{C_j(\cdot)\}, \kappa(\cdot)\}$, estimate through SMM
 - target moments from size distribution, sorting, spatial distribution of agents
- \diamond Test the model by computing changes in agents from 2010-2022 with 2010 ACS fundamentals
 - Correlation with the data: 78% (2010), 84% (2022), 78% (changes)

Evaluating Spatial Welfare Inequality

- 1. Methodology
- 2. Flexible pricing equilibrium
- 3. National pricing equilibrium
- 4. Complementary place-based tax policy

- ◊ Evaluate <u>spatial heterogeneity</u> in welfare using <u>compensating differentials</u>
- \diamond Compute savings $\hat{B}_{k,cz}$ needed to equalize welfare between cz and the best off location cz^* :

◊ Can further decompose differential into a pricing margin

... and residual access margin,
$$\hat{B}_{k,cz}^{access} = \hat{B}_{k,cz} - \hat{B}_{k,cz}^{price}$$

What Drives Spatial Differences in Welfare under Flexible Pricing?

What Drives Spatial Differences in Welfare under Flexible Pricing?

- ◊ National pricing is a <u>redistributive</u> policy
 - reallocates surplus from high-income to low-income CZ's on the pricing margin
- ♦ But geographic reallocation of insurers <u>dampens</u> effects of the pricing margin
- ◊ Calculate the <u>change</u> in compensating differentials from national pricing

How Does National Pricing Redistribute Across Commuting Zones?

How Does National Pricing Redistribute Across Commuting Zones?

How Does National Pricing Redistribute Across Commuting Zones?

- ♦ Propose a <u>complementary</u> and <u>revenue-neutral</u> place-based tax policy:
 - reduce premium revenue taxes in low-income commuting zones
 - finance by increasing premium revenue taxes in high-income commuting zones
- ♦ Focus on the bottom third of the spatial income distribution, consider two tax schemes:
 - 1. no taxes in poor commuting zones
 - 2. convert tax rates to subsidy rates in poor commuting zones
- Output to changes in differentials from national pricing alone

Can Regulators Offset the Access Margin Effects Through Taxes?

Conclusion

- \diamond Build and quantify a model of firm location choices \rightarrow assess welfare effects of national pricing
 - lower pricing inequality $\not \rightarrow$ lower welfare inequality due to access margin
 - pricing margin relatively unimportant for spatial inequality
- ♦ Complementary place-based policies are useful for targeting access inequality
 - Subsidizing premium revenues in poor places encourages participation through increased access
- ◊ Some steps for future work:
 - 1. Structural shift toward online and remote access
 - 2. Test mechanism directly in the UK annuities market

Thank you!

Email: dwenning@princeton.edu

Appendix

 $\log(\mathsf{sales}_{js}) = \beta_{\mathsf{ins}} \log(\mathsf{in-state agents})_{js} + \beta_{\mathsf{oos}} \log(\mathsf{out-of-state agents})_{js} + \gamma_j + \gamma_s + e_{js}$

- \diamond If local agents only used for processing and/or digital consulting, expect $\beta_{ins} = \beta_{oos}$
- ◊ Two functional forms: log and inverse hyperbolic sine (IHS)
 - IHS has similar properties to log, but allows 0's
- ◊ Two measures of state-level agents:
 - 1. Total agents licensed by insurer j in state s
 - 2. Total fractional agents, adjusts for independent agents selling multiple insurers' products

	Lo	g	IH	S
In-State Agents	0.527*** (0.024)	0.467 ^{***} (0.020)	0.550 ^{***} (0.017)	0.647 ^{***} (0.019)
Out-of-State Agents	0.061** (0.030)	0.069** (0.028)	0.067*** (0.018)	0.157*** (0.019)
Raw Agents	\checkmark	-	\checkmark	-
Fractional Agents	-	\checkmark	-	\checkmark
Obs	4,319	4,319	8,987	8,987
Within R^2	0.17	0.18	0.26	0.27

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Heteroscedasticity-robust SE in parentheses.

- Theory predicts that spatial sorting patterns should matter for prices under national pricing
 if firms ignore geographic markets, prices should only depend on costs and market power
- ♦ Estimate price-sorting correlations conditional on firm characteristics:

$$\log p_j^{am} = \beta^{\text{inc}} \underbrace{\mathbb{E}[\text{income}_s | \mathbf{A}_j]}_{\text{agent-weighted}} + \beta^{\text{pop}} \underbrace{\mathbb{E}[\text{density}_s | \mathbf{A}_j]}_{\text{agent-weighted}} + \underbrace{\gamma' \mathbf{X}_j}_{\text{insurer}} + \mathsf{FE}_{am} + \text{error}_j$$

- Insurer characteristics include firm size, leverage, organization type, and ROE
- $\diamond\,$ Use regression specification to do a variance decomposition of prices
 - even if sorting coefficients significant, how much do they explain relative to other characteristics?

- ◊ Income is significantly related to prices
 - density insignificant across specs.
 - size insig. after controlling for income

	Geog. Only	Firm Only	Both
Income	-0.170***		-0.140^{***}
Density	0.107**		0.094**
Size		-0.102^{***}	-0.056**
ROE		0.020	0.017
Leverage		0.036	0.031
Stock		0.012	-0.013
Obs	731	731	731
Within R^2	0.246	0.169	0.268

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Firm clusters.

- density insignificant across specs.
- size insig. after controlling for income
- $\diamond~$ Variance decomposition
 - Income: 66% of expl. variation
 - **Density**: 18%
 - Firm characteristics: 17%

$$\log(\operatorname{agents}_{j,cz}) = \gamma_j + \gamma_{cz} + \beta_{\operatorname{inc}}^{\mathsf{X}} X_j \times \log(\operatorname{income}_{cz}) + \beta_{\operatorname{pd}}^{\mathsf{X}} X_j \times \log(\operatorname{density}_{cz}) + e_{j,cz}$$

 $\diamond X_j$ = various measures of insurer "desirability":

- insurer size
- financial rating
- log price

♦ Regression estimates relative allocation of firms along geographic margins (income/density):

$$\beta_{\text{inc}}^{X} \left[\underbrace{(X_j - X_{j'}) \overline{\text{log(income}_{cz'})}}_{\text{response of agents to X in high-income commuting zone}} - \underbrace{(X_j - X_{j'}) \overline{\text{log(income}_{cz})}}_{\text{response of agents to X in low-income commuting zone}} - \underbrace{(X_j - X_{j'}) \overline{\text{log(income}_{cz})}}_{\text{response of agents to X in low-income commuting zone}} \right]$$

	Size	Rating	Price
Income	0.123***	0.109***	-0.575***
	(0.007)	(0.008)	(0.059)
Density	0.233***	0.123***	0.082
	(0.008)	(0.009)	(0.067)
Obs	36,471	36,079	10,219
R^2	0.68	0.67	0.75

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Heteroscedasticity-robust SE in parentheses.

 \diamond Firm j's demand shifter for households of type k in location s is

$$D_{js}^{k} = \underbrace{\iota_{k}}_{\substack{\text{taste for insurance}}} \times \underbrace{\omega_{j}}_{\substack{\text{quality of insurance}}} \times \underbrace{B_{k}}_{\substack{\text{expenditures}}} \times \underbrace{\eta_{s}^{k}N_{s}}_{\substack{\text{total number of households}}} \times \underbrace{(P_{s}^{k})^{\varepsilon_{k}-1}}_{\substack{\text{local price index}}}$$

♦ Local price index depends on prices p_{js} , local access κ_{js} , and insurer quality ω_j :

$$P_{s}^{k} = \left(\underbrace{1}_{\substack{\text{outside} \\ \text{option}}} + \sum_{j \in \mathcal{J}} \underbrace{\omega_{j}}_{\text{quality}} \times \underbrace{\kappa_{js}}_{\text{access}} \times \underbrace{p_{js}^{1-\varepsilon_{k}}}_{\text{prices}} \right)^{\frac{1}{1-\varepsilon_{k}}}$$

Proposition: Single-Crossing Condition

Consider two insurers with $\theta_j > \theta_{j'}$. Then there exists a <u>hiring cost</u> threshold such that $A_{js} > A_{j's}$ above the threshold and $A_{js} < A_{j's}$ below the threshold. Further:

- under flexible pricing, this threshold is unique

- under national pricing, this threshold is unique conditional on market income and size

♦ Let $A_{js} \equiv \theta_j a_{js}$ and assume $\kappa_{js} = 1 - \exp(-\theta_j a_{js}/N_s^{\alpha})$ (quantitative functional form)

 $\diamond~$ Suppose $\theta_j > \theta_{j'}.~$ Can write difference in optimal number of agents as

$$A_{js}^* - A_{j's}^* \propto \log\left(\frac{f_s/\theta_{j'} + C_{j'}'}{f_s/\theta_j + C_j'}\right) \to \begin{cases} -\log\left(\frac{C_j'}{C_{j'}'}\right) < 0 & \text{as } f_s \to 0\\ \log\left(\frac{\theta_j}{\theta_{j'}}\right) > 0 & \text{as } f_s \to \infty \end{cases}$$

 \diamond Monotonicity in $f_s \rightarrow$ spatial sorting along <u>hiring costs</u>

- Connecting to data: f_s increasing in $\eta_s^h \rightarrow$ productive insurers more active in <u>rich</u> locations

 \diamond Optimal prices for a given regulatory regime ${\cal P}$ satisfy

$$p_{js}^{*} = \left(\frac{\zeta_{js}}{\zeta_{js}-1}\right)\xi, \qquad \zeta_{js} = \begin{cases} \delta_{js}^{\mathsf{b}} + (1-\delta_{js}^{\mathsf{w}})\varepsilon_{\ell}, & \text{if } \mathcal{P} = \mathcal{P}^{\mathsf{flex}} \\ \delta_{js}^{\mathsf{b}} + (1-\delta_{js}^{\mathsf{w}})\varepsilon_{\ell}, & \text{if } \mathcal{P} = \mathcal{P}^{\mathsf{flex}} \end{cases}$$

 $\diamond\,$ Can write log difference in welfare across regimes as

$$\log \mathbb{W}^{k, \mathsf{natl}}_s - \log \mathbb{W}^{k, \mathsf{flex}}_s = \log P^{k, \mathsf{flex}}_s - \log P^{k, \mathsf{natl}}_s$$

 $\diamond~$ To first order, this becomes

$$\Delta \log \mathbb{W}_{s}^{k} \approx \frac{\iota_{k}}{\varepsilon_{k} - 1} \left[\underbrace{\sum_{j \in \mathcal{J}} \kappa_{js}^{\text{flex}} \left((p_{j}^{\text{natl}})^{1 - \varepsilon_{k}} - (p_{js}^{\text{flex}})^{1 - \varepsilon_{k}} \right)}_{\text{welfare effect of price changes}} + \underbrace{\sum_{j \in \mathcal{J}} \left(\kappa_{js}^{\text{natl}} - \kappa_{js}^{\text{flex}} \right) (p_{j}^{\text{natl}})^{1 - \varepsilon_{k}}}_{\text{welfare effects of access changes}} \right]$$

Proposition: Geographic Response to National Pricing

Suppose $\iota \to \infty$, $\theta \to \theta$, and f_s is solely a function of market size, $f_s = f(N_s)$. Then there exists a unique local income threshold schedule $\eta^*(N)$ under national pricing such that:

- <u>below</u> the cutoff, insurers <u>reduce</u> their agents relative to flexible pricing
- <u>above</u> the threshold, insurers <u>increase</u> their agents relative to flexible pricing

National pricing affects local profitability through equilibrium markups

The Spatial Distribution of Life Insurance Agents

Above: agents across US commuting zones **Right:** log agents by CZ pop. and income

- \diamond True sales share of firm j in state s is $\sigma_{js} = \chi_s \sigma_{js}^h + (1 \chi_s) \sigma_{js}^\ell$
 - Can't directly take logs
 - Solution: f.o. approximation around $\sigma^h_{js}/\sigma^\ell_{js} pprox 1$
- ♦ Imposing the approximation gives a **log-linear** structure:

$$\log \sigma_{js} \approx \underbrace{\log \sigma_{os} - \mathbb{E}_{s}[O^{k}] - \alpha \log N_{s}}_{\text{absorb in fixed effect, FE}_{s}} + \log a_{js} + \log a_{js} + \log \omega_{j} - (\varepsilon_{\ell} - 1) \log p_{j} + (\varepsilon_{\ell} - \varepsilon_{h})\chi_{s} \log p_{j}$$

 Actuarial (fair) value of a life insurance policy is expected payout for an insurer that uses premium revenues to invest in a portfolio of treasuries:

$$V^{agm} = \left(1 + \sum_{k=1}^{m-1} R^{-k}(k) \prod_{\ell}^{k-1} \rho_{a+\ell}^{g}\right)^{-1} \left(\sum_{k=2}^{m} R^{-k}(k) \prod_{\ell=0}^{k-2} \rho_{a+\ell}^{g}(1 - \rho_{a+k-1}^{g})\right)$$

- R(k) is gross return on a treasury with maturity k
- $\rho_{a+\ell}^g$ is lapsation-adjusted (5%) mortality rate of household age $a + \ell$ of gender g
- $\diamond~V$ captures value of investing to the household ightarrow model consistent to scale prices by V

- Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data collection
 Agent data is a snapshot of August 2022, the time of data
 Agent data
 - can see when current agents became licensed to each insurer
 - do not observe agents that exited prior to Aug. 2022
- \diamond Specification uses state-year fixed effects \rightarrow if measurement error scales observed agents over time to same degree across firms, not an issue since error will be absorbed in fixed effects
- \diamond k-period auto correlation is about 58% for 2011, increasing up to 2022
- Oata are collected from Annuity Shopper hosted by Immediate Annuities
 - Pull from July issues each year to correspond to the June quotes from LI pricing data
- Report a range of annuity prices for men and women aged 50-85 in 5-year increments
 Estimation uses 50, 55, 60, 65, 70 year olds, averaged across genders
- \diamond Sample is relatively small, only about 15-20 companies per issue
 - only 8-10 firms remain when matched with Compulife prices

- Instrument is based on the shadow cost of capital concept embodied in Koijen-Yogo 2016, 2022
 - Statutory capital constraints generate shadow costs that transmit into prices
 - KY2022 \rightarrow reserve valuation $\uparrow,$ shadow costs \uparrow
- ◊ Growing literature on how losses <u>across</u> divisions within insurance companies/groups spillover to prices
 - Logic: high shadow costs of capital ightarrow accumulate short maturity premiums to boost capital
 - Extends to P&C insurance [e.g. Ge 2023 JF]
- ◊ First-stage estimates confirm the mechanism: VA losses negatively related to <u>short-term</u> life insurance prices
 - F stat very small for 20- and 30-year policies

Full Estimation Results

	Var	iable Annuity Lo	osses	Annuity Prices			
	(1)	(2)	(3)	(4)	(5)	(6)	
Log Price	-4.338	-4.533		-1.182	-0.304		
	(0.097)	(0.061)		(0.446)	(0.542)		
Log Price $ imes ilde{\chi}_s$	-2.708	-2.038	-1.828	-2.882	-2.541	-2.701	
	(0.052)	(0.056)	(0.032)	(0.000)	(0.000)	(0.000)	
Size	0.809	0.686		0.375	0.427		
	(0.000)	(0.000)		(0.022)	(0.000)		
Rating	-1.420	-0.295		-1.703	-5.507		
	(0.431)	(0.845)		(0.582)	(0.000)		
Stock	-1.399	-0.771		0.583	0.737		
	(0.213)	(0.484)		(0.193)	(0.000)		
ROE	-1.149	-1.042		-0.308	-1.356		
	(0.006)	(0.026)		(0.852)	(0.031)		
Demand Controls	\checkmark						
Productivity Proxy		\checkmark			\checkmark		
Firm-Year FE			\checkmark			\checkmark	
Agents				\checkmark	\checkmark	\checkmark	
Obs	11326	10784	12190	949	949	949	
Within R ²	0.28	0.31	-0.01	0.294	0.75	0.09	
F	105.0	111.4	484.7	36.5	56.9	115.6	

Estimation Results with Racial Categories

	Variable Annuity Losses				Annuity Prices			
	(1)	(2)	(3)	(4)	(5)	(6)		
Low Inc $ imes$ White	-2.903	-3.172		-2.687	-1.783			
	(0.226)	(0.139)		(0.086)	(0.000)			
High Inc $ imes$ White	-4.362	-2.038	-3.175	-1.487	-1.374	-1.489		
	(0.026)	(0.017)	(0.004)	(0.001)	(0.000)	(0.000)		
Low Inc $ imes$ Non-White	-3.251	-3.069	-2.207	2.551	2.505	2.532		
	(0.049)	(0.037)	(0.012)	(0.000)	(0.000)	(0.000)		
High Inc $ imes$ Non-White	-4.163	-3.267	-2.652	-1.168	-0.607	-0.786		
	(0.032)	(0.021)	(0.012)	(0.137)	(0.367)	(0.261)		
Demand Controls	\checkmark	\checkmark		\checkmark	\checkmark			
Productivity Proxy		\checkmark			\checkmark			
Firm-Year FE			\checkmark			\checkmark		
Agents				\checkmark	\checkmark	\checkmark		
Obs	11561	11006	12443	949	949	949		
Within R^2	0.13	0.15	-0.06	0.29	0.75	0.09		
F	65.8	74.4	164.3	18.0	26.1	35.2		

	(1)	(2)	(3)	(4)	(5)
Price	-0.377**	-0.403*	-0.385	-0.436**	-0.572^{*}
Price $ imes \chi_s$	-0.898***	-0.856***	-0.654***	-0.880***	-0.678***
Size	0.322***	0.339***	0.892***	0.280***	0.843***
ROE	-0.280	-0.321	-0.640**	-0.201	-0.173
Stock	-0.296	-0.265	0.330	-0.302**	0.293
Rating	2.131***	1.690***	1.657***	2.698***	3.011***
Leverage	-1.563^{***}	-1.622^{***}	-6.208***	-1.070	-5.739***
Agents	Y	Y	Ν	Y	Ν
Years	2007-2018	2007-2015	2007-2015	2011-2018	2011-2018
Obs	11892	8825	27519	8006	24339
R^2	0.609	0.597	0.522	0.618	0.540

Note: *p < 0.1, **p < 0.05, ***p < 0.01. SEs clustered at firm-year level.

 \diamond Marginal costs $\{\xi_i\}$ can be inverted from the optimal pricing condition:

$$\xi_j = \left(1 - \frac{1}{\zeta_j}\right) \hat{p}_j, \qquad \zeta_j = \sum_{s \in S} \underbrace{\delta_{js}}_{\substack{\text{between-mkt} \\ \text{sales share}}} \times \underbrace{[\chi_{js}\hat{\varepsilon}_h + (1 - \chi_{js})\hat{\varepsilon}_\ell]}_{\text{local elasticity}}$$

- Estimate commuting-zone-level sales using residual demand
- Construct across-market sales shares for each firm
- Recover firm-level elasticity and back out marginal costs

 \diamond Marginal costs $\{\xi_j\}$ can be inverted from the optimal pricing condition:

 \diamond Productivities $\{\theta_j\}$ can be inverted from optimal agent conditions:

$$\hat{S}_{j} = \zeta_{j} \sum_{s \in S} \left(f_{s} + C'(\hat{\boldsymbol{a}}_{j}, \theta_{j}) \right) N_{s}^{\alpha} \left(\frac{\kappa_{js}(\hat{\boldsymbol{a}}_{js}, \theta_{j})}{1 - \kappa_{js}(\hat{\boldsymbol{a}}_{js}, \theta_{j})} \right)$$

- Use agent data, observed sales, and guess of model parameters
- Re-estimate marginal costs with new productivities, solve fixed point

- \diamond Marginal costs $\{\xi_i\}$ can be inverted from the optimal pricing condition:
- \diamond Productivities $\{\theta_j\}$ can be inverted from optimal agent conditions:
- \diamond Outside option values $\{O^h, O^\ell\}$ set to rationalize participation rates across household types:

$$\hat{\sigma}_{o}^{k} = \sum_{s \in \mathcal{S}} \left(\frac{E_{s}^{k}}{\sum_{s'} E_{s'}^{k}} \right) \sigma_{os}^{k}(O^{k})$$

- High-income participation: 59.7%
- Low-income participation: 37.4%

$$f_s = \tau_0 N_s^{\tau_1} \eta_s^{\tau_2}$$

 \diamond Parameters τ_0, τ_1, τ_2 determine costs across locations

 \rightarrow use to target top 20% firm sales (72.9%) across firms and allocation of agents across CZs

$$\log \frac{\mathbb{E}[a_c \mid N_c \text{ in top } q\%]}{\mathbb{E}[a_c \mid N_c \text{ in bot } q\%]} = \beta_0 + \beta_1(50 - q) + \operatorname{error}_q, \qquad q = 50, 45, \dots, 5$$

$$f_s = \tau_0 N_s^{\tau_1} \eta_s^{\tau_2}, \quad C(\bar{A}_j) = \frac{\gamma_0}{\gamma_1} \left(\sum_s A_{js} \right)^{\gamma_1}$$

 \diamond Parameters au_0, au_1, au_2 determine costs across locations

- \rightarrow use to target top 20% firm sales (72.9%) across firms and allocation of agents across CZs
- \diamond Parameters γ_0 and γ_1 determine costs across <u>firms</u>
 - \rightarrow use to target spatial sorting patterns

$$\begin{split} &\sum_{j \in \mathcal{J}} \left(\frac{\mathbf{a}_{jc}}{\sum_{j'} \mathbf{a}_{j'c}} \right) \log \omega_j = \beta_0^{\mathsf{AS}} + \beta_1^{\mathsf{AS}} \log \eta_c + \operatorname{error}_c \\ &\sum_{c \in \mathcal{C}} \left(\frac{\mathbf{a}_{jc}}{\sum_{c'} \mathbf{a}_{jc'}} \right) \log \eta_c = \beta_0^{\mathsf{RS}} + \beta_1^{\mathsf{RS}} \log \omega_j + \operatorname{error}_j \end{split}$$

$$f_{s} = \tau_{0} N_{s}^{\tau_{1}} \eta_{s}^{\tau_{2}}, \quad C(\bar{A}_{j}) = \frac{\gamma_{0}}{\gamma_{1}} \left(\sum_{s} A_{js} \right)^{\gamma_{1}}, \quad \kappa_{js}(A_{js}) = 1 - \exp\left(\theta_{j} A_{js} / N_{s}^{\alpha}\right)$$

 \diamond Parameters au_0, au_1, au_2 determine costs across <u>locations</u>

- \rightarrow use to target top 20% firm sales (72.9%) across firms and allocation of agents across CZs
- \diamond Parameters γ_0 and γ_1 determine costs across <u>firms</u>
 - \rightarrow use to target spatial sorting patterns
- \diamond Market penetration size penalty $\alpha \rightarrow$ average # of agent-insurer pairs (3982) across CZs

$$f_{s} = \tau_{0} N_{s}^{\tau_{1}} \eta_{s}^{\tau_{2}}, \quad C(\bar{A}_{j}) = \frac{\gamma_{0}}{\gamma_{1}} \left(\sum_{s} A_{js} \right)^{\gamma_{1}}, \quad \kappa_{js}(A_{js}) = 1 - \exp\left(\theta_{j} A_{js} / N_{s}^{\alpha}\right)$$

 \diamond Parameters au_0, au_1, au_2 determine costs across <u>locations</u>

- \rightarrow use to target top 20% firm sales (72.9%) across firms and allocation of agents across CZs
- \diamond Parameters γ_0 and γ_1 determine costs across <u>firms</u>
 - \rightarrow use to target spatial sorting patterns
- \diamond Market penetration size penalty $\alpha \rightarrow$ average # of agent-insurer pairs (3982) across CZs

Guess ψ_n

Moment Group	Parameter	Value	Moment	Data	Model
Sorting	γ_0	0.003	relative sorting: eta_1^{RS}	0.019	0.016
	γ_1	2.032	absolute sorting: eta_1^{AS}	0.781	0.938
	$ au_1$	0.815	relative agents: eta_{0}	2.206	1.901
	$ au_2$	-0.785	relative agents: eta_1	0.096	0.042
Size	$ au_0$	0.112	top 20% share	0.729	0.640
	α	0.618	agent-firms per CZ	3982	5794
Participation	O_h	1.995	high-income part.	0.597	0.597
	O_ℓ	10.42	low-income part.	0.374	0.374

(a) Small Firms (4)

(b) Medium Firms (7)

(c) Large Firms (10)

Sorting in the Estimated Model: Market Penetration

◊ How well does the model extrapolate to other settings?

- $\diamond\,$ Explore the effect of changes in local fundamentals over the last decade
 - Poor places became richer but smaller relative to rich places in 2010
 - Compare change in total agents across commuting zones between 2010 and 2020

Testing the Model: Spatial Polarization

(a) High-Income Share

(b) Population

(c) Data

Estimation Results: Total Agents Across Markets

Estimation Results: Insurer Structural Parameters

(a) Productivity

(b) Demand Components

(c) Marginal Costs

Baseline Welfare Effects by Income and Population

	10		0.48			0.40		0.29	0.24	0.13	-0.14
ט	9 -		0.44	0.43	0.41	0.39	0.30	0.25	0.22	0.15	-0.04
	8 -		0.53	0.45	0.36	0.32	0.29	0.24	0.14	0.00	-0.07
הפכו	7 -	0.48	0.49	0.43	0.37	0.34	0.28	0.30	0.17	-0.03	-0.03
	6 -	0.47	0.48	0.40	0.36	0.29	0.18	0.19	0.11	0.01	-0.05
niat	5 -	0.36	0.42	0.38	0.30	0.27	0.12	0.06	0.18	0.04	-0.25
2	4 -	0.25	0.30	0.32	0.30	0.16	0.16	0.11	0.01	-0.10	-0.16
3	з –	0.04	0.24	0.24	0.23	0.11	0.09	0.10	0.11	0.07	-0.17
	2 -	0.09	0.19	0.17	0.15	0.13	0.09	0.07	0.09	-0.01	-0.03
	1	0.04	0.11	0.08	0.10	0.04	0.07	0.05	-0.04		-0.20
		i CZ	2 Hiał	3 n Inc	4 ome	5 Pop	6 ulati	7 ion S	8 Share	9 e De	10 cile
	(b) High-Income										

◊ What are the consequences of spatial sorting for local welfare effects?

 $\diamond~$ Useful to use the CS approximation and consider firm-level components:

$$\Delta \mathsf{CS}_{js}^{k} \propto \omega_{j} \left\{ \underbrace{\kappa_{js}^{\mathsf{flex}} \left((p_{j}^{\mathsf{natl}})^{1-\varepsilon_{k}} - (p_{js}^{\mathsf{flex}})^{1-\varepsilon_{k}} \right)}_{\mathsf{intensive margin}} + \underbrace{(p_{j}^{\mathsf{natl}})^{1-\varepsilon_{k}} \left(\kappa_{js}^{\mathsf{natl}} - \kappa_{js}^{\mathsf{flex}} \right)}_{\mathsf{extensive margin}} \right\}$$

 $\diamond\,$ Crucial note: intensive margin \rightarrow 0 as $\kappa_{is}^{\rm flex}\rightarrow$ 0

- Extensive margin most important for firms initially sorting away from a location;
- Intensive margin most important for firms sorting toward a location
- Total effect most important for firms with large demand components

 \diamond For a given parameter tuple (q,μ_ℓ) with $\mu_\ell>$ 0, consider the set of policies

$$t^*_s(q,\mu_\ell,\mu_h) = egin{cases} (1+\mu_h)t_s, & ext{ if } \eta_s \geq \eta^q_s \ (1-\mu_\ell)t_s, & ext{ if } \eta_s < \eta^q_s \end{cases} ext{ s.t. } \int \int t^*_s S^*_{js} djds = \int \int t_s S^{ ext{natl}}_{js} djds$$