
Banks in Space∗

Ezra Oberfield Esteban Rossi-Hansberg

Cornell University University of Chicago

Nicholas Trachter Derek Wenning

FRB of Richmond Indiana University

June 9, 2025

Abstract

We study the spatial expansion of banks in response to the banking deregulation of the 1980s and

90s in order to develop a spatial theory of banking. During this period, large banks expanded rapidly,

mostly by adding new branches in new locations, while many small banks exited. We document that large

banks sorted into the densest markets, but that sorting weakened over time as large banks expanded to

more marginal markets in search of locations with a relative abundance of retail deposits. This allowed

large banks to reduce their dependence on expensive wholesale funding and grow further. To rationalize

these patterns, we propose a theory of multi-branch banks that sort into heterogeneous locations. Our

theory yields two forms of sorting. First, span-of-control sorting incentivizes top firms to select the largest

markets and smaller banks the more marginal ones. Second, mismatch sorting incentivizes banks to locate

in more marginal locations, where deposits are abundant relative to loan demand, to better align their

deposits and loans and minimize wholesale funding. Together, these two forms of sorting account well for

the sorting patterns we document in the data.
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1 Introduction

Bank branches are ubiquitous. Most of us have one nearby, and it is probably a branch of a well-known

bank. Since the early eighties, reciprocal interstate agreements and bank deregulation have resulted in

roughly 50% more bank branches across the U.S., but a decline in the number of banks of more than 40%.

The largest U.S. banks have grown rapidly by opening branches in more counties across the country, while

small banks have declined and exited. This spatial expansion is marked by specific spatial sorting patterns.

In this paper, we document the evolution of spatial sorting in the banking industry in response to banking

deregulation, and the resulting spatial expansion of large banks, and provide a theory that rationalizes

these patterns. Ultimately, local bank competition, and therefore the local access costs and interest rates

individuals and firms get for their savings and pay for their loans, are determined by these patterns.

In 1981, banks could only operate in their home state and, in some instances, only in their home county.

By 1996, these restrictions had changed dramatically. Voluntary reciprocal interstate agreements implied

that banks could operate in all U.S. states. In 1997, federal regulation eliminated all branching location

restrictions. The largest 1% of banks took advantage of deregulation by expanding the number of branches

rapidly both in terms of branches per county and, especially, by entering new counties. In contrast, many

smaller banks exited or contracted their number of branches.1

In 1981, the largest U.S. banks were sorted into the densest counties only, while smaller banks served

smaller, more rural, locations. This sorting pattern was very pronounced. Furthermore, denser counties

exhibited a larger demand for loans relative to the supply of deposits, so these large banks tended to

fund their lending using wholesale funding (e.g., brokered deposits, interbank loans, foreign deposits, and

commercial paper, among other funding types). We show that the top 1% of banks used wholesale funds

much more intensively. Because this credit is unsecured, it tends to be more expensive than retail deposits.

Back in 1981, however, large banks could not enter other less dense counties where retail deposits were more

abundant and demand for loans smaller.

Deregulation allowed large banks to expand geographically, and they took full advantage. Where did they

open new branches? The answer is nuanced. On one hand, large banks kept sorting into the larger markets

in other states, but without steering too far from their headquarters, as this would have increased their

operational costs. Indeed, we show that distance to headquarters explains, in part, the evolution of a bank’s

branching locations. However, sorting became weaker as large banks also expanded into less dense markets

in search of retail deposits. We not only document this decrease in sorting in response to deregulation, but

we also show that the relative reliance of large banks on wholesale funding declined markedly in response.

The ability of large banks to both operate in the largest markets, but without relying on wholesale funds

because of their parallel presence in smaller markets with an abundance of retail deposits, was the foundation

of their growth and success. Of course, these patterns also incentivized bank-level fixed-cost investments

that allowed banks to serve their customers better and at a lower cost; for example, by investing in online

1See Kroszner and Strahan (2014) for a review of the regulations that limited the expansion of banks and the competition
among them.
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platforms and information and communication technologies.2

Our findings underscore the presence of two forms of sorting. The first one results from span-of-control

management costs. Large, productive banks are reluctant to place branches in small markets because

they consume management time that could be dedicated to other, more profitable, locations. While those

profitable locations entail larger fixed costs in terms of rents and other local costs, productive banks value

the higher market size and care relatively less about these local fixed costs. In contrast, small banks are

dissuaded from larger markets because of the high local fixed costs, but are not dissuaded from operating

branches in smaller markets because they only manage a small number of branches, so their span-of-control

costs are small or negligible. The result is a span-of-control sorting pattern, as in Oberfield et al. (2024),

that leads productive banks to locate in the densest markets with the largest local costs, but for small banks

to have a larger presence in the smaller markets.

The second form of sorting is more specific to the banking industry. Consider this, admittedly enormously

simplified, view of a bank’s operation. A bank’s business is to lend money at a relatively high interest rate and

fund these loans with deposits for which it pays a relatively low interest rate. The interest rate differential

determines the bank’s profits after covering the costs associated with the bank’s operation, as well as other

costs related, for example, to the fact that deposits can be withdrawn at any time while loans have fixed

terms, and the risk of default involved in lending. When a bank’s loans are larger than its retail deposits,

banks can use wholesale funding to fund the gap. These funds are more expensive as they command a

higher interest rate, so part of a bank’s objective is to minimize their use.3 Because demand for loans and

supply of retail deposits vary across space, banks whose operation uses wholesale funding intensively want

to enter locations with large supplies of retail deposits and low demand for loans. We show that large

productive banks use more wholesale funding, and, in response to deregulation, entered smaller locations

than the ones in which they already had a presence, locations that were less dense and had a large supply of

retail deposits.4 Hence, this form of spatial “mismatch sorting,” used to balance deposits and loans, tended

to decrease the overall sorting of large banks in the densest locations.

The model we propose provides a general theory of the sorting of heterogeneous banks’ branches across

heterogeneous locations that generates, as an outcome, both sorting patterns: span-of-control sorting and

mismatch sorting. Our starting point is the framework in Oberfield et al. (2024), which studies the equi-

librium sorting of multi-plant firms in space and also generates span-of-control sorting, whereby the most

productive firms locate more plants in the more expensive markets but fewer plants in the markets with

lower rents. Here, we add many new features that are relevant for the banking industry, and potentially

2To document these facts we use data on individual banks’ branches and their deposits from the Federal Deposit Insurance
Corporation (FDIC)’s Summary of Deposits from 1981 to 2006. We also collect information on bank-level wholesale funding
from Call Reports and on county-level population and per-capita income from the U.S. Census and the BEA.

3Wholesale funds can be more expensive because they are junior to deposits, because of a variety of government regulations
in the wholesale market, or because deposits entail a service benefit for consumers. We take the interest rates faced by banks
in the wholesale funds market as given.

4For a recent example of banks expanding their branch network in the search for deposits see “America’s Biggest Bank Is
Growing the Old-Fashioned Way: Branches” (David Benoit, Wall Street Journal, February 6, 2024.)
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other industries as well, including distance to headquarters costs, investments that improve a firm’s appeal

to customers and lead to increasing returns, and most importantly, a demand for loans and bank deposits

that varies differentially across locations.

Locations house an exogenous set of individuals (households and firms in other sectors) with hetero-

geneous preferences for banks. Traveling to a bank branch is costly, and potentially differentially costly

depending on whether the customer is managing deposits or obtaining a loan. Thus, individuals prefer to

bank at a branch nearby. The appeal of a bank to customers depends on the customer’s distance to the

bank’s headquarters, idiosyncratic factors specific to a location, and bank investments to improve the appeal

of its services (e.g., investments in online platforms or advertising). Consumers use the bank branch that

maximizes their utility given the loan and deposit interest rates, their local and idiosyncratic appeal, and

their distance.5 They can potentially choose different banks and branches for deposits and loans.

A bank’s problem, conditional on the residual demand that they face for loans and deposits in every

location, is then to choose the set of locations to set up branches given a local fixed cost per branch and a

span-of-control that depends on the total number of branches of the bank, how much to invest in deposit

and loan appeal, as well as the interest rate for deposits and loans in all locations, to maximize profits.6

Importantly, if the total deposits it receives do not cover the total amount of loans it issues, then it needs to

cover the gap with unsecured wholesale funding. The cost of wholesale funding is increasing in the size of

the gap relative to total deposits. Our first result shows that banks want to set interest rates for loans and

deposits that are common across locations, consistent with the empirical finding that banks predominantly

set uniform deposit and lending rates across branches.7

The core of the model is the bank’s location decisions for its branches. This is a hard combinatorial

problem that cannot be solved practically for the more than 3000 counties in the U.S. Hence, as in Oberfield

et al. (2024) we study the limit problem where the fixed and span-of-control costs of setting branches

converge to zero, and the cost of traveling to a branch becomes large. The limit can be characterized by

the density of branches that a bank sets in every location. Importantly, in this limit, all the relevant forces

(cannibalization, span-of-control costs, transport costs, etc.) are still active and determine the optimal

bank choices. We provide an algorithm to solve the branch location problem, a key input to solve for the

monopolistically competitive equilibrium of the model.

Our two main propositions show that this framework generates the two types of sorting consistent with

the deregulation experience of the U.S. banking industry. Furthermore, because banks that expand have

larger incentives to invest in customer appeal, our framework also explains the large expansion in the number

5As Sakong and Zentefis (2023) document, although online and mobile banking have increased in importance in the last two
decades, branches are still an important access point for banking services. They cite several surveys that show that most bank
customers continue to visit branches regularly to open accounts and obtain loans, and that customers tend to use branches that
are close to them.

6We incorporate market power in the market for retail deposits following the recent literature on the deposits channel of
monetary policy, e.g., Drechsler et al. (2017) and Di Tella and Kurlat (2021).

7See Radecki (1998), Heitfield (1999), Heitfield and Prager (2004), Biehl (2002), Park and Pennacchi (2008), Yankov (2024),
Granja and Paixao (2023), and Begenau and Stafford (2022).
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of branches of the most productive banks.

The empirical banking literature has established the importance of distance to a bank’s branches for

customers’ access to banking services. For small business lending, Berger et al. (2005) show that the distance

between a small firm and the bank branch it borrows from is small and that the average distance falls if the

lender has more local branches.8 Using data from the recent fracking boom, Gilje et al. (2016) argue that

distance is also important in mortgage markets.9 For deposits, Sakong and Zentefis (2023) use a gravity

equation and cellphone geolocation data to estimate the impact of distance on bank use and find a coefficient

on log distance in the range of −1.45 to −1.26, implying that a doubling of distance reduces the use of a

branch by a factor of roughly 2.5.

In light of this evidence, and even though the main component of this important deregulation episode

was the geographic expansion of the top banks, most theories of the banking sector do not incorporate space

or the decision to locate bank branches across locations.10 This is natural, given that solving spatial multi-

plant location problems in equilibrium is complicated. As discussed above, we expand the methodology

proposed by Oberfield et al. (2024) to the banking sector. Recently, some papers have started to study

spatial issues in the banking sector. For example, Ji et al. (2023) studies the dynamic expansion of banks

in Thailand and its impact on inequality. d’Avernas et al. (2023) study the location of branches of small

and large banks across space and the rates they charge, given the different sets of consumers that they

serve. Koont (2023) studies how banks’ investments in digital platforms affect the network of branches and

local and aggregate concentration in the banking industry. Aguirregabiria et al. (2016) and Corbae and

D’Erasmo (2020, 2021, 2022) propose models of location choice with diversification as the core reason for

bank expansion, a mechanism we abstract from in this paper.11

Understanding the location of bank branches through the two forms of sorting that we highlight is,

we believe, novel to our work. Beyond the banking industry, several studies have discussed the spatial

expansion of multi-plant firms, including Rossi-Hansberg et al. (2021), Hsieh and Rossi-Hansberg (2022),

and Cao et al. (2019). Location choices of multi-plant firms has been studied more in the international

context for multinational firms, as in Tintelnot (2016) or Antràs et al. (2017), and more recently in a series

of papers using the algorithm in Arkolakis et al. (2017). Still, it remains challenging to expand this type of

analysis in spatial setups with many locations, and the resulting quantitative exercises do not provide the

8Using data from a cross-section of the National Survey of Small Business Finance in 1993 they estimate a mean distance
of 26 miles and a median distance of only 3 miles. Petersen and Rajan (2002) use the same data along with the age of lending
relationships to show that distance to lenders rose between the 1970s and 1990s, although Brevoort et al. (2010) use later waves
to show that the trend has not continued past 1998. Agarwal and Hauswald (2010) provide evidence that distance makes the
collection of soft information on borrowers more difficult. Nguyen (2019) uses quasi-experimental variation in bank branch
closures following mergers and finds a bank branch closure reduces local small business lending across all lenders, but the effects
dissipate within six miles.

9They study banks that were exposed to liquidity inflows from fracking booms. These banks increased mortgage originations
in non-fracking counties where they had branches, but not in non-fracking counties where they did not have a presence.

10Kroszner and Strahan (2014) provides a recent survey.
11These papers build on the findings of Levine et al. (2021) who showed that when expansion increased diversification, it

reduced bank volatility and the cost of funds. Morelli et al. (2023) take location choice as given and study the interplay of
diversification and market power.
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type of analytical characterization of the sorting patterns we aim to provide.

Several papers have modeled the sorting of single-plant firms only, as in Baldwin and Okubo (2006),

Nocke (2006), Gaubert (2018), and Ziv (2019).12 These papers have been motivated by the observation

that plants in more dense locations tend to be more productive. As discussed in Combes et al. (2012), this

cross-sectional pattern could be driven by local agglomeration effects or characteristics, sorting, or selection.

Because plants do not typically move, it is difficult to find a model-consistent way to distinguish between

these mechanisms using only single-plant firms. Oberfield et al. (2024) incorporates multi-plant firms and

uses information about a firm’s other plants together with leave-out strategies to detect sorting. Still, this

strategy relies only on cross-sectional patterns. In contrast, the banking deregulation episode we study

here provides a rare window into the forces driving sorting. It provides a natural experiment where we can

study the establishment of branches by banks with the same origin but different sizes when a new bilateral

agreement between states is signed. The results underscore the importance of the two types of sorting we

have uncovered, which are at the core of the new spatial theory of retail banking that we propose.

The rest of the paper is organized as follows. The next section introduces our data and discusses some

of the key institutional details of the deregulation of banks in the 1980s and 90s. It also presents some basic

patterns of the expansion of banks during this period. Section 3 introduces our theory and the limit economy

we study and characterize. It also presents our main results on sorting. Section 4 presents evidence showing

that the two forms of sorting we uncover account well for the spatial evolution of the banking industry in

response to banking deregulation. Section 5 concludes. An Appendix presents all the proofs, additional

characterizations and derivations, additional empirical results, and details of the dataset construction.

2 Data, Institutional Setting, and Basic Empirical Patterns

2.1 Institutional Setting: the Bank Deregulation of the 1980s and 90s

The McFadden Act of 1927 marked the onset of geographic banking regulation in the United States. Before

the Act, two types of banking institutions existed: national banks, chartered by the federal government and

required to operate out of a single branch, and state-chartered banks, which in some states were permitted to

branch throughout the state that provided their charter (Preston, 1927). The McFadden Act was designed

to take market power away from the then-dominant state-chartered banks by allowing national banks to

expand within states. National banks acted swiftly. For example, Bank of Italy — at the time a single-

branch, nationally-chartered operation based in San Francisco — had begun to build on its initial success

by establishing state-chartered subsidiaries throughout the state of California under its holding company,

Bancitaly. Following the passage of the McFadden Act, Bank of Italy merged with its subsidiaries and

12See also Bilal (2023); Lindenlaub et al. (2022); Mann (2023); Oh (2023). Wenning (2023) models the sorting of multi-region
insurance firms across locations, with an emphasis on how these decisions are affected by uniform pricing rules.
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became Bank of America. By 1930, Bank of America had 453 branches throughout the state of California.13

The McFadden Act explicitly restricted banks from growing outside of their chartered state. However,

many banks exploited a loophole in the regulation: the law applied only to the bank itself but did not refer

to broader forms of organization. This prompted the creation of “group banks” — the historical term for

bank holding companies — that purchased majority shares in state-chartered banks nationwide, as described

in Mahon (2013). For example, through its holding company Transamerica Corporation, Bank of America

quickly acquired banks throughout western U.S. states (Los Angeles Times, 1958).

In 1956, the Bank Holding Company Act of 1956 prevented further geographic expansion.14 Existing

multi-state banks were forced to part with their out-of-state branches and continue operations solely in

their chartered state. Bank of America, for example, lost ownership of its western U.S. banks and became

confined by the borders of California.15

Banks remained tethered to their home states until the late 1970’s. In 1978, Maine announced it would

open its borders to out-of-state banks on a bilateral reciprocal condition: if Maine opened to New York

banks, for example, New York had to allow Maine banks to enter New York as well. No other states

reciprocated until New York did in 1982, after which several others followed suit. We show the evolution of

the reciprocal agreements in Figure 1.16 In Figure 1a, we provide an example of the evolution of permissible

out-of-state entry for California banks. States in yellow opened early to California’s banks, while states in

dark violet only opened by 1996 when all states liberalized. Clearly, bilateral agreements followed a spatial

pattern, with neighboring and nearby states signing bilateral agreements early with California.

Figure 1b plots the share of active reciprocal contracts out of all possible reciprocal contracts in the

contiguous U.S. over time. Starting with Maine and New York in 1982, the number of agreements increased

exponentially until 1991 when about half of all potential agreements had been signed.17 The reciprocal

agreements, as well as the contemporaneous relaxation of intra-state banking and branching regulation,

marked the beginning of the end of the strict regulatory hold on geographic expansion in the banking

industry. Interstate banking restrictions effectively ended with the passage of the Riegle-Neal Act of 1994,

also known as the Interstate Bank Branching Efficiency Act (IBBEA), which declared that by 1997, every

state would be required to permit out-of-state acquisitions, but gave states the chance to opt in prior to

1997.18 Every state opted in by 1996, as shown in the sharp increase in reciprocal agreements in Figure 1b.

In the 1980s and 90s some banks took advantage of their ability to expand. Bank of America is a good

13See Board of Governors of the Federal Reserve System (U.S.). Committee on Branch, Group, and Chain Banking, 1935
(1932).

14The Bank Holding Company Act of 1956 was, however, enacted primarily to separate banks from other financial institutions
such as insurance. See Bank Holding Company Act of 1956 (1956) for more details.

15Its 329 out-of-state domestic banks were consolidated into one entity, Firstamerica Corp. This is one of a rare number of
cases where banking regulators approved out-of-state banking prior to the 1980’s (Los Angeles Times, 1958).

16Information on the precise reciprocal contracts comes from Amel (1993).
17The temporary slowdown in agreements in 1991 was not the result of additional institutional changes but rather the

slowdown of national and regional agreements after several states had decided to deregulate nationally while other states had
yet to start the process.

18States were permitted to limit the extent of out-of-state entry, e.g. by setting deposit caps on out-of-state banks or by
limiting entry through branching. In our analysis, we consider a state to be open as long as they opt-in at all.
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(b) Reciprocal Inter-state Agreements Over Time

Figure 1: This figure shows the evolution of geographic deregulation. Panel (a) shows a map of the states
available for California banks to enter between 1982 and 2006. Panel (b) shows the time series of the share
of reciprocal interstate agreements across the United States.

Active
Inactive

(a) Active Bank of America Commuting Zones, 1981

Active
Inactive

(b) Active Bank of America Commuting Zones, 2006

Figure 2: This figure highlights the initial geographic restrictions and subsequent expansion of Bank of
America from 1981-2006 across US commuting zones. Panel (a) shows a map of commuting zones in which
Bank of America had at least one branch in 1981, and Panel (b) shows the corresponding map for 2006.

example of the binding nature of the geographic restrictions in banking regulation. In Figure 2 we depict

the evolution of its presence across commuting zones.19 In 1981, California, Bank of America’s headquarters

state, did not have any reciprocal entry arrangements with other states; as a result, Bank of America was

restricted to bank solely in California (Figure 2a). Hence, Bank of America operated in only 18 of 722

US commuting zones in 1981, all of California’s commuting zones, serving approximately 10% of the US

population. California opened up gradually to nearby states throughout the 1980s and subsequently formed

19Note that though our analysis is at the county level, we use commuting zones rather than counties for the Bank of America
maps solely for visualization purposes.
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reciprocal relationships with much of the eastern and central United States through the early 1990s, as

shown in Figure 1a. Bank of America grew rapidly throughout this period: by 2006 (Figure 2b), Bank of

America was active in 261 commuting zones, serving approximately 70% of the US population. Of course,

not all banks expanded to the same extent; in fact, many banks exited the market during this period, either

due to competitive forces or through consolidation.

We now proceed to describe the data we use and document some basic patterns of the spatial evolution

of the U.S. banking industry during this period. These patterns guide key aspects of the theory we propose.

After presenting our theory and showing the type of sorting it generates, we come back to the data and

present evidence of exactly these implied sorting patterns.

2.2 Some Basic Empirical Patterns

We collect data from two primary sources. First, we collect data on individual bank branches and their

deposits from The Federal Deposit Insurance Corporation (FDIC)’s Summary of Deposits from 1981 to

2006.20 Since the historical data do not cover banks regulated by the Office of Thrift and Supervision, we

exclude these banks from the analysis.21 Each bank branch in the data has a corresponding US county code,

which we use as our geographic unit of analysis. Second, we collect data on bank-level liabilities from the

Report of Condition and Income (Call Reports). We use bank liabilities to construct a measure of wholesale

funding exposure, which we describe later in this section.

We aggregate banks to the holding company level. Before the passage of the IBBEA in 1994, holding

companies that acquired out-of-state banks were required to keep the acquired banks as proper legal sub-

sidiaries and were not permitted to convert the banks to branches of existing companies. For example, when

Bank of America acquired Seafirst Corporation in Seattle in 1983, they operated Seafirst as a subsidiary of

Bank of America until 1998. After 1998, Seafirst’s bank identifier in the Summary of Deposits data changed

to that of Bank of America, while the holding company identifier remained unchanged. Conducting our

analysis at the bank level would therefore underestimate the true amount of expansion throughout the 1980s

and 90s. We provide further details on the holding company data construction in Appendix C.1.

We supplement the banking data with county-level income, population, and demographic measures.

Population and demographic data come from the yearly county-level Census population estimates from

1980-2006. Per-capita income data come from the Bureau of Economic Analysis’ EconProfile data set.

2.2.1 Basic Patterns: Fewer Banks with Many More Branches

During the deregulation period, the total number of banks declined rapidly, while the total number of

bank branches increased continuously. Figure 3a documents aggregate trends in the number of banks and

20The FDIC provides data from 1994 to the present. We supplement the FDIC data with historical Summary of Deposits
data from 1981 to 1993 provided by Christa Bouwman.

21The Office of Thrift and Supervision was formed in 1989, which is why the historical data do not include banks regulated
by this entity. These banks hold an average of 13% of total deposits in the United States from 1994-2006.
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(a) Aggregate Banks and Branches
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(b) Banks and Branches Per County

Figure 3: The evolution of total banks and total branches since 1981. The solid line shows the percentage
change in the number of branches, and the dashed red line shows the percentage change in the number of
banks. Panel (a) shows the evolution of aggregate banks and branches, and Panel (b) displays the evolution
of average banks and branches per county. Numbers reflect the initial values of branches (top) and banks
(bottom) in 1981 and 2006, respectively.

branches over time. The number of bank branches in the U.S. grew by nearly 60% between 1981 and 2006,

while the number of banks declined by about 45%. The rapid expansion of branches per bank, particularly

the large increase in the number of branches of some banks, implies that customers had access to more

banks and branches in their county. Figure 3b shows that, between 1981 and 2006, the number of banks per

county grew by 1.66 banks on average (28%). Even more impressive was the growth in the average number

of branches per county, which grew by about 57%, as also shown in Figure 3b.22

2.2.2 Basic Patterns: Top banks Expanded by Growing Geographically

We next highlight the nature of bank branch expansion across the bank size distribution. For a given size

group g, in terms of total deposits, we first calculate the total number of branches in each size group.

We then separate growth in the number of branches into an intensive (branches per county) and extensive

22The simultaneous decline in the total number of banks and increase in the average number of banks present in a county
is consistent with the findings in Rossi-Hansberg et al. (2021), which show that this is a general phenomenon across industries
over the same period.
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margin (number of counties), namely,

∆ log(branchesgt) = ∆ log(branches per county)gt︸ ︷︷ ︸
intensive margin growth

+ ∆ log(counties)gt︸ ︷︷ ︸
extensive margin growth

.

The variable countiesgt is the total number of active counties across banks in size group g in year t. The

intensive margin component measures changes in the number of branches per active county for banks in

group g. The extensive margin directly measures the change in the average number of active counties.23

EO: We reassign banks to groups in each year.

Figure 4 plots the total change in branches for each size group g over time, as well as the intensive

and extensive margin growth components. Two patterns emerge. First, total branch growth was strongest

for the largest banks: the total number of branches belonging to the top 10% of banks increased by about

61 log points (83%). Branches of the bottom 90% only increased by 14 log points (15.3%). Second, the

extensive margin component — the banks’ geographic expansion or contraction —dominated for the top

10% of banks, accounting for 76% of total branch growth. Conversely, the intensive margin component —

banks’ expansion or contraction within each county — dominated for the bottom 90% of banks, accounting

for nearly all of their branch growth.

The fast expansion in the number of branches of top banks implied that an increasing share of all

branches was concentrated in the top 10% of banks by total deposits. Figure 5 emphasizes how the top

10% of banks in total deposits grew their share of total branches. Their share increased from about 62% to

72% of all branches between 1981 and 2006, which was the result of the 83% increase in the total number

of branches across this period for the top 10% of banks.

2.2.3 Basic Patterns: Large Banks Use More Wholesale Funding

A bank’s core business is to receive deposits and lend them at a higher interest rate. When there is a

mismatch between deposits and loans, expensive unsecured wholesale funding may be used to bridge the

gap. Examples of wholesale funding include brokered deposits, interbank loans, foreign deposits, Fed funds,

and commercial paper. If banks have good business opportunities to lend but are constrained in space, they

may not be able to generate enough deposits from their branches to meet loan demand. Hence, large banks

might have used wholesale funding more intensively before deregulation.24

We start by documenting the use of wholesale funding across the bank size distribution in 1981. To

avoid selecting particular types of wholesale funds, we measure wholesale funding exposure as the ratio of

23Note that this measure controls for the overlap in branch networks across banks within a given size group. For example,
if Bank of America and Wells Fargo both have branches in Los Angeles County, we count this as a single active county.

24Geographic deregulation may therefore reduce liquidity constraints, partially explaining why reduced-form work such as
Favara and Imbs (2015) finds that deregulation leads to growth in credit supply.
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Figure 4: This figure plots total branch growth for three bank size bins. The size bins are the bottom 90%
of banks and the top 10% of banks by total deposits. Panel (a) displays cumulative log changes in total
branches for each size group, panel (b) displays the cumulative log change in branches per county, and panel
(c) displays the cumulative log change in the number of active counties within each size group.
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Figure 5: This figure shows branch ownership shares of the top 10% of banks by total deposits over time.
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Figure 6: These figures display the use of wholesale funds across the bank size distribution. Panel (a) shows
the distribution of log wholesale funding exposure across bank size bins in 1981. Panel (b) shows the average
log wholesale funding exposure across bank size bins over time. Wholesale funding exposure is measured as
the ratio of non-deposit liabilities to deposits. Bank size bins are the bottom 90% and the top 10% of banks
by total deposits.

a bank’s non-deposit liabilities to its deposits, namely,25

WFEjt =
Liabilitiesjt −Depositsjt

Depositsjt
. (1)

Figure 6a documents the distribution of log wholesale funding exposure, logWFEjt, across banks in each

size bin. A higher value for WFEjt indicates that, conditional on a bank’s size, it uses a relatively high

amount of wholesale funds. The distribution for the largest 10% of banks is clearly shifted toward higher

levels of wholesale funding exposure relative to the bottom 90% of banks, indicating that wholesale funding

is typically used by large banks and only rarely used intensively by smaller banks.

Figure 6b displays the equal-weighted average log wholesale funding exposure for each bank size group

between 1981 and 2006. While all banks tended to use wholesale funding more intensively after the 1990s,

the largest 10% of banks used wholesale funding less intensively relative to the bottom 90% by the end of

our sample. The difference between the groups was 1.43 log points in 1981 and declined to 1.14 log points

by 2006, a 20% decline.

25This value can in principle be greater than 1. However, most values above one are very small unit banks, so we exclude
banks whose non-deposit liabilities exceed their deposits from our primary sample. This results in dropping 1,676 (0.7%)
bank-year observations from the sample. We verify in Section 4 that the omitted banks do not change our primary results.
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The implication is clear: in 1981, large banks used wholesale funds more often and much more intensively.

This implies that the gap between retail deposits and loans was large for these banks, which made their

operation less profitable. The large geographic expansion that we documented above could therefore have

been the result of the need to acquire more retail deposits, which would be consistent with the decline

in the relative use of wholesale funding by large banks.26 Before embarking on this and other empirical

investigations, we present our theory, which yields several empirical implications that guide the empirical

analysis in Section 4.

3 A Spatial Theory of Banking

Consider an environment composed of banks and households that use banks for deposits and loans.27 Space is

a Jordan-measurable set O. We consider an industry equilibrium that takes as given household locations and

household demand for deposits and loans. These are held fixed in all counterfactuals. We first characterize

the household decisions, which generate the local demand for deposits and loans that each bank faces. We

then turn to the profit optimization problem of banks.

3.1 Households

Location ℓ is composed of a set of households Iℓ. Households have heterogeneous tastes for banks and make

a discrete choice over which bank and branch to use for deposits and which bank and branch to use for loans.

Households dislike distance to their bank’s branch. Each household in location ℓ has a taste for each bank

that has a component that is common to all residents of ℓ and an idiosyncratic component. Conditional on

choosing a particular bank j and branch o, the household’s demand for deposits and loans depends on the

interest rates set by each bank for deposits, rDjo, and loans, rLjo.

In Appendix B.1 we describe the full microfoundation of the household’s problem. Here we describe the

resulting residual demand curves for deposits and loans facing each bank. Households in location ℓ, who

choose to use bank j for deposits, choose the branch oDjℓ ∈ Oj that provides the best combination of distance

to ℓ and interest rates, among the set of branches of bank j, Oj . Given that choice, let rD
j,oDjℓ

be the deposit

rate for bank j that is relevant for households in ℓ; namely, the deposit rate at the branch that households

in ℓ choose. Similarly, let oLjℓ be the branch households in ℓ would choose if they choose bank j, and rL
j,oLjℓ

the corresponding interest rate.

Given all banks’ location choices and interest rate choices, the total demand for deposits and loans from

26While several factors can be attributed to the average increase in wholesale funding usage in the 1990s, such as looser
monetary policy and growing competition from non-banks such as mutual funds, they do not directly explain the patterns in
the cross-section of bank size.

27Demand for banking services could also come from firms in other industries.
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households in ℓ are given by

Djℓ = TD
(
δoDjℓ,ℓ

)
QD

jℓA
D
ℓ D

(
rD
j,oDjℓ

)
, (2)

and

Ljℓ = TL
(
δoLjℓ,ℓ

)
QL

jℓA
L
ℓ L
(
rL
j,oLjℓ

)
. (3)

QD
jℓ and Q

L
jℓ denote common components of taste for bank j deposit and loan services among households in ℓ;

TD(δ) and TL(δ) are decreasing functions of distance δ and summarize household distaste for distance to the

bank branches it chooses for deposits and loans;28 AD
ℓ and AL

ℓ are local demand shifters common to all banks

which incorporate local population, local demand for deposits/loans, and local price levels/competition;

D(rDj ) and L(rLj ) summarize the impact of interest rates on household level demand for deposits and loans,

incorporating both the impact of the interest rate on the probability of choosing to use a particular bank

and on the amount of deposits and loans conditional on choosing that bank.

We assume that D(·) and L(·) are twice continuously differentiable, that D(·) is strictly increasing and

L(·) is strictly decreasing, that limr→−∞ rD(r) = limr→∞ rL(r) = 0, and that DD′′

(D′)2 and LL′′

(L′)2 are each

strictly less than 2. These last two assumptions ensure that the unique solutions to banks’ interest rate

setting problems are interior.

We also assume that bank j’s local appeal for each service can be decomposed into three components,

so

QD
jℓ = Q̄D

j J
D
jℓϕjℓ, (4)

and

QL
jℓ = Q̄L

j J
L
jℓϕjℓ, (5)

where Q̄D
j and Q̄L

j are common for bank j across all locations and will be determined by a bank’s investment

decisions; JD
jℓ ≡ JD(δ

ℓHQ
j ,ℓ

) and JL
jℓ ≡ JL(δ

ℓHQ
j ,ℓ

) where JD(δ) and JL(δ) are weakly decreasing functions of

distance, to allow for the possibility that appeal is lower for locations further from bank j’s headquarters at

ℓHQ
j ; and {ϕjℓ}ℓ are idiosyncratic appeal shifters drawn from a multivariate Frechet distribution.29

3.2 Banks

A bank j is born with a headquarters location, ℓHQ
j . It chooses a finite set of branch locations, Oj , and for

each branch o ∈ Oj , deposit and lending rates, rDjo and r
L
jo. If a bank operates a branch in location o, it must

28The empirical literature has documented the importance of distance to bank branches for business lending (Berger et al.,
2005; Petersen and Rajan, 2002)), mortgages (Gilje et al., 2016), and deposits (Sakong and Zentefis, 2023).

29We provide evidence that bank appeal declines with distance from a bank’s headquarters in Appendix C.2.
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pay a local fixed cost, Ψo. Additionally, to operate the set of branches Oj , it must hire H(|Oj |) workers at
its headquarters location, with H strictly increasing and strictly convex in the number of branches, |Oj |.
Furthermore, the bank chooses the common components of bank appeal for both of its services, Q̄D

j and Q̄L
j ,

by hiring C(Q̄D
j , Q̄

L
j ) workers in its headquarters location, with C homothetic in its two arguments, strictly

increasing, and strictly convex, and twice continuously differentiable. We also assume that, for any weakly

positive Q̄D and Q̄L, CD(0, Q̄
L) = CL(Q̄

D, 0) = 0 and limt→∞CD(tQ̄
D, tQ̄L) + CL(tQ̄

D, tQ̄L) = ∞, where

CD and CL denote the partial derivatives with respect to its first and second arguments respectively.30

Banks take deposits and make loans. They use wholesale funding to make up the gap between the two.

Let

Dj ≡
∫
Djℓdℓ (6)

and

Lj ≡
∫
Ljℓdℓ (7)

denote total deposits and total loans, so that the total wholesale funding required is simply Wj = Lj −Dj .

If the bank gets funds through the wholesale market, it pays a higher interest rate on those funds than

for retail deposits. The interest rate it pays on wholesale funds is R
(
Wj

Dj

)
. We assume that R(·) is twice

continuously differentiable and weakly increasing, that R(ω)ω is weakly convex, and that ω2R′(ω) is bounded

(or equivalently lim supω→∞ ω2R′(ω) is finite).31

A bank is fully characterized by its headquarters location, ℓHQ
j , its unit costs for processing deposits and

loans, θDj and θLj , as well as its idiosyncratic local appeal draws, {ϕjℓ}ℓ. We assume the number of banks is

large enough so that each bank takes the local demand shifters AD
ℓ and AL

ℓ as given when making pricing

and location decisions. Letting w∗
j denote the wage in bank j’s headquarter location, bank j’s problem is

thus given by

πj = sup

Wj , Dj , Lj , Oj , Q̄
D
j , Q̄

L
j ,{

rDjo, r
L
jo

}
o
, {Djℓ, Ljℓ, o

D
jℓ, o

L
jℓ}ℓ

∫ [
(rL

j,oLjℓ
− θLj )Ljℓ − (rD

j,oDjℓ
+ θDj )Djℓ

]
dℓ−R(

Wj

Dj
)Wj −

∑
o∈Oj

Ψo

−w∗
jH(|Oj |)− w∗

jC(Q̄
D
j , Q̄

L
j )

(8)

subject to (2), (3), (4), (5), (6), (7), Wj = Lj −Dj , and household decisions of which branch to use.

30Kleinman (2023) studies the role of headquarter-level investments in service firms’ spatial expansion.
31This wholesale fund cost function can be justified as a violation of the Modigliani-Miller theorem that results from debt

overhang costs as in (Andersen et al., 2019), with deposits being senior to wholesale funding liabilities. It can also be understood
as different banks operating in segmented wholesale markets depending on the characteristics and actions that lead to their
wholesale funding exposure. Specific government policies that favor banks with lower wholesale funding exposure could generate
it too. In any case, the bank takes it as given, and so does our equilibrium analysis. A full micro-foundation requires modeling
the entire wholesale fund market, which falls beyond the scope of this paper.
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We start our characterization of this problem by showing that each bank chooses the same interest rates

for deposits and loans across all of its locations.32 We relegate the proof of this result to Appendix A.1.

Lemma 1 If bank j solves the problem in (8), it chooses to set the same interest rate on deposits across

branches and the same interest rate on loans across branches. Namely, the bank chooses rDj and rLj and sets

rDjo = rDj and rLjo = rLj for all o ∈ Oj.

The intuition is that banks’ optimal branch location already optimizes on the marginal value of a

customer across locations by determining the relative distance of the closest branch, hence there is no need

to additionally vary the interest rate offered. A simple corollary is that a household that uses bank j for a

particular service always chooses the closest branch.

Imposing these results and changing variables so that ωj ≡ Wj

Dj
denotes banks j’s reliance on wholesale

funding, we can express bank j’s problem as

πj = sup

ωj , Dj , Lj , Oj , Q̄
D
j , Q̄

L
j ,

rDj , r
L
j , {oDjℓ, oLjℓ}ℓ

(
rLj − θLj

)
Lj−

(
rDj + θDj

)
Dj−R (ωj)ωjDj−

∑
o∈Oj

Ψo−w∗
jH (|Oj |)−w∗

jC(Q̄
D
j , Q̄

L
j )

subject to

Dj ≥
∫
TD

(
δoDjℓ,ℓ

)
QD

jℓA
D
ℓ D

(
rDj
)
dℓ,

Lj ≤
∫
TL
(
δoLjℓ,ℓ

)
QL

jℓA
L
ℓ L
(
rLj
)
dℓ,

as well as (4), (5), (1 + ωj)Dj = Lj , and household decisions of which branch to use.

Note that, since banks set the same interest across all branches, the profits of the bank depend only

on its aggregate deposits and loans. The distribution of loans and deposits across branches only matters

through the constraints. Of course, the collection of branches it establishes determines how binding are

these constraints and therefore overall profits.

For the remainder of the paper, we study a limiting special case of the model. The special case, which we

describe more formally in Appendix B.2, is one in which the local fixed cost of setting up branches as well as

the incremental headquarters cost both shrink toward zero while households’ distaste for distance from their

branch grows large.33 In this limiting case, it will be optimal for the bank to set up many plants. As we

showed in Oberfield et al. (2024), this implies that the bank’s problem converges to one in which it chooses

32This is consistent with Radecki (1998), Heitfield (1999), Heitfield and Prager (2004), Biehl (2002), Park and Pennacchi
(2008), Yankov (2024), Granja and Paixao (2023), and Begenau and Stafford (2022), who find that banks predominantly set
uniform rates across branches.

33We parameterize a sequence of economies where the parameters depend on ∆ and study the limiting economy as ∆ → 0. The
cost of distance functions are TD(δ;∆) = tD(δ/∆) and TL(δ;∆) = tL(δ/∆); the span of control cost is H(|O|;∆) = h(∆2|O|);
the local fixed cost is Ψℓ(∆) = ∆2ψℓ.
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a density nj of branches over space, so that the density of branches bank j chooses in the neighborhood of

location ℓ is njℓ. The bank’s problem is then given by

πj = sup

ωj , Dj , Lj , Q̄
D
j , Q̄

L
j ,

rDj , r
L
j , {njℓ}ℓ

(
rLj − θLj

)
Lj −

(
rDj + θDj

)
Dj −

∫
ψℓnjℓdℓ−R(ωj)ωjDj −w∗

jh(|nj |)−w∗
jC(Q̄

D
j , Q̄

L
j )

subject to (4), (5), (1 + ωj)Dj = Lj , and

Dj ≥
∫
QD

jℓA
D
ℓ κ

D(njℓ)D
(
rDj
)
dℓ, (9)

Lj ≤
∫
QL

jℓA
L
ℓ κ

L(njℓ)L
(
rLj
)
dℓ, (10)

where |nj | ≡
∫
njℓdℓ, and κ

D(n) and κL(n) are known functions that summarize the impact of additional

branches on local customer appeal and depend on the distance cost functions TD(δ) and TL(δ), respectively.

They capture the extent to which a bank offers customers branches that are close to them and takes into

account the cannibalization of customers from other branches. κD(n) and κL(n) are strictly increasing,

strictly concave, and satisfy the following properties: κu(0) = 0, limn→∞ κu(n) = 1, κu′(0) ∈ (0,∞),

κu′′(0) = 0, and 1−κu(n) ∼
n→∞

n−1/2 for each use u ∈ {D,L}. ψℓ denotes the fixed cost of setting up a unit

density of plants in ℓ in the limit case and is defined in Appendix B.2. We now show that bank j’s reliance

on wholesale funding is a sufficient statistic for its shadow values of deposits and loans.

As we discussed above, banks are characterized by their cost of issuing loans and deposits, their head-

quarters location, and their idiosyncratic appeal across locations. Productive banks that have low costs earn

more from issuing deposits and loans and are willing to use more wholesale funds. Similarly, banks that

have more appeal in large markets, because of their location or because of idiosyncratic reasons, are willing

to use more wholesale funds to satisfy their higher demand for loans. Hence, banks with more wholesale

funds are larger, as we showed was the case empirically in the previous section.

To see this, let λDj and λLj be the respective multipliers on constraints (9) and (10), namely, the shadow

values of deposits and loans, respectively. The first-order conditions with respect to Dj , Lj , and ω then

implies that these multipliers are given by

λDj = R(ωj) + (1 + ωj)ωjR
′(ωj)︸ ︷︷ ︸

≡ρD(ωj)

−rDj − θDj , (11)

and

λLj = rLj − θLj − [R(ωj) + ωjR
′(ωj)]︸ ︷︷ ︸

≡ρL(ωj)

. (12)

The expressions are intuitive. Start with the shadow cost of a deposit in equation (11). The shadow value
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of an additional deposit is the value of relaxing the need for wholesale funding, ρD(ωj), minus the interest

rate paid, rDj , and the cost of processing the loan, θDj . Note that the shadow value of relaxing the wholesale

constraint is an increasing function of only bank j’s reliance on wholesale funds, ωj . The shadow value of

an additional loan in (12) is the interest charged for the loan, rLj , minus its processing costs, θLj , minus the

costs from tightening the wholesale funds’ constraint, ρL(ωj), which again is an increasing function of only

the bank’s reliance on wholesale funding, ωj .

The expressions for ρD and ρL also imply that ρD′(ωj) = (1 + ωj)ρ
L′(ωj), or

Djρ
D′(ωj) = Ljρ

L′(ωj).

That is, at the optimum, the marginal contribution of wholesale funding to the shadow cost of funding loans

equals its marginal contribution to the shadow payoff from deposits.

The interest rate the bank pays on deposits and the one it charges on loans depend on these shadow

values, its costs, and the demand function. The first order condition for rDj along with equation (9) imply

that

D
(
rDj
)
=λDj D′ (rDj )
=(ρD(ωj)− rDj − θDj )D′ (rDj ) .

Similarly, the first order conditions for rLj together with equation (10) imply that

L
(
rLj
)
=− λLj L′ (rLj )
=− (rLj − θLj − ρL(ωj))L′ (rLj ) .

Hence, given all fundamentals, we can determine the bank’s deposit and loan interest rates using only

the wholesale funds intensity of the bank. More reliance on wholesale funds raises the shadow cost of

funds for lending and the shadow value of funds from deposits, as ρL′(ω) = d2[R(ω)ω]
dω2 > 0 and ρD′(ω) =

(1 + ω)d
2[R(ω)ω]
dω2 > 0. In addition, the second-order conditions of the interest rate problem ensure a positive

pass-through of marginal cost/value of funds into interest rates.34 As a result, higher wholesale funding ωj

leads to higher rLj and rDj , and hence higher D(rDj ) and lower L(rLj ).35 We summarize these results in the

following lemma.

Lemma 2 Given its processing costs, θDj and θLj , a bank’s wholesale funding intensity ωj is a sufficient

34Consider the deposit and lending interest rate problems rD ≡ argmaxr(c − r)D(r) and rL ≡ argmaxr(r − c)L(r). The

pass-through of marginal cost into interest rates is drD

dc
= 1/

(
2− D(rD)D′′(rD)

D′(rD)2

)
and drL

dc
= 1/

(
2− L(rL)L′′(rL)

L′(rL)2

)
, which are

positive when the the second order conditions of the interest rate setting problems are satisfied.
35These results are consistent with the findings of Gilje et al. (2016), who study banks whose geographic footprint overlapped

with areas undergoing the fracking boom. These banks experienced large inflows in liquidity, as deposits in those areas rose
and borrowers paid down loans. They find that those banks reduced deposit rates (specifically interest expenses relative to
deposits) and increased mortgages in locations that were not exposed to the fracking boom.
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statistic for its deposit and lending rates, rDj and rLj , which are the unique solutions to

rDj = argmax
r

[
ρD(ωj)− r − θDj

]
D(r) (13)

rLj = argmax
r

[
r − θLj − ρL(ωj)

]
L(r). (14)

rDj and rLj are both increasing functions of ωj. D(rDj ) is increasing in ωj while L(rLj ) is decreasing in ωj.

A solution to a bank’s problem can therefore be found using the following algorithm:

1. Guess ωj , Q̄
D
j , and Q̄

L
j .

2. rDj and rLj then satisfy equations (13) and (14).

3. With interest rates we can compute the multipliers λDj and λLj using equations (11) and (12).

4. The optimal footprint for bank j, nj can then be solved using the first-order conditions with respect

to njℓ for all locations, namely,

[
λDj Q

D
jℓA

D
ℓ D

(
rDj
)
+ λLj Q

L
jℓA

L
ℓ L
(
rLj
)]
κ′(njℓ) = ψℓ + w∗

jh
′(|nj |),

where QD
jℓ and Q

L
jℓ are determined by equations (4) and (5).

5. Total deposits and loans are then given by equations (9) and (10), with equality.

6. The final step is to check whether these actions are consistent with the original guesses on wholesale

reliance and bank appeal, namely,

ωj =
Lj −Dj

Dj
,

∂C(Q̄D
j , Q̄

L
j )

∂Q̄D
j

=

∫
λDj A

D
ℓ D(rDj )κD(njℓ)J

D
jℓϕjℓdℓ,

∂C(Q̄D
j , Q̄

L
j )

∂Q̄L
j

=

∫
λLj A

L
ℓ L(rLj )κL(njℓ)JL

jℓϕjℓdℓ.

We now proceed to characterize how banks set up their branches across space. Namely, we characterize

the sorting patterns of bank branches.

3.3 Sorting and the Determinants of Banks’ Footprints

In the model, four distinct forces determine a bank’s geographic footprint. First, banks are likely to place

branches close to headquarters since this directly increases their appeal. Second, “span-of-control sorting”

says that more productive banks sort into denser more expensive locations, while less productive banks
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open branches in less attractive, but cheaper, markets. Third, “mismatch sorting” says that banks choose

locations based on the match of the location’s characteristics to the funding needs of the bank. We discuss

each in turn in this subsection. Finally, a bank’s incentives to invest in its appeal to borrowers and depositors

determine the bank’s size, but also the value of entering different locations. We study this last force in the

final subsection.

3.3.1 Distance to Headquarters

First, banks are likely to place branches close to headquarters. This is a common feature in the multinational

literature (e.g. Tintelnot (2016)), and is apparent in the clustering of a bank’s establishments at locations

near its headquarters. In the model, we have assumed this directly through the bank appeal functions in

equations (4) and (5). Namely, bank appeal, given by QD
jℓ and Q

L
jℓ, is higher when location ℓ is closer to the

bank’s headquarters.

3.3.2 Span-of-Control Sorting

Second, banks sort across locations with different characteristics. In particular, more productive banks are

likely to place more branches in more expensive and denser locations, whereas less productive banks are

likely to place more branches in cheaper, less dense, locations. This force was discussed in detail in Oberfield

et al. (2024).

Define zDj ≡ λDj Q̄
D
j D(rDj ) and zLj ≡ λLj Q̄

L
j L(rLj ). In addition, define σj ≡ w∗

jh
′ (|nj |) to be bank j’s

marginal span-of-control cost. That is, σj represents the management resources required by the bank to

operate an additional branch. Then the first order condition on njℓ (a marginal increase in the density of

branches of bank j in location ℓ) is given by

[
zDj J

D
jℓA

D
ℓ κ

D′ (njℓ) + zLj J
L
jℓA

L
ℓ κ

L′ (njℓ)
]
ϕjℓ = ψℓ + σj . (15)

The left-hand side of equation (15) represents the marginal increase in profits from setting up an additional

branch taking into account how it relaxes the wholesale funds’ constraint (through λDj and λLj which deter-

mine zDj and zLj ) and also how the branch cannibalizes other local branches (through κD′ and κL′). The

right-hand side represents the total fixed cost of an additional branch. It includes the fixed cost of setting

up the branch, ψℓ, but also the marginal span-of-control costs from adding a new branch to the bank’s

portfolio, σj . This last cost is large for larger banks since, due to their higher productivity or better appeal,

they set up more branches and the span-of-control cost function, h(·), is convex. Then, if the span of control

cost rises sufficiently fast with the total number of branches, as formalized in Assumption 1 below,36 it leads

36Note that the elasticities of the marginal efficiencies of branching are continuous and limn→0
−nκu′′(n)

κu′(n)
= 0, and

limn→∞
−nκu′′(n)

κu′(n)
= 3/2, for u ∈ D,L. If these elasticities are each increasing with n (as in the natural case when house-

hold’s distance costs are exponential, tD(δ) = e−τDδ and tL(δ) = e−τLδ), then Assumption 1 reduces to an assumption that
Nh′′(N)
h′(N)

is bounded below by 3/2.
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to “span-of control” sorting. We show this in the next lemma and proposition.

Assumption 1 The marginal span of control cost h′(·) is uniformly more elastic than the marginal local

efficiencies of branching, κD′(·) and κL′(·):

inf
N≥0

Nh′′(N)

h′(N)
≥ sup

u∈{D,L},n≥0

−nκu′′(n)
κu′(n)

.

Before we present our main result on “span-of-control” sorting, we show that more productive banks

have higher marginal span-of-control costs, σj and, under Assumption 1, the difference is larger than their

difference in deposit and loan productivities. All proofs are relegated to Appendix A.

Lemma 3 Consider two banks with the same headquarters location and the same realization of idiosyncratic

local taste shocks, {ϕjℓ}. Suppose that Bank 2 is equally more productive than Bank 1 in both services, so

zD2 /z
D
1 = zL2 /z

L
1 > 1. Then σ2 > σ1 and, if Assumption 1 holds, σ2/σ1 > zD2 /z

D
1 = zL2 /z

L
1 .

With this result in hand, we can derive a characterization of span-of-control sorting. Intuitively, larger

endogenous fixed costs make large banks sort into the most expensive locations since it makes them less

sensitive to the exogenous part of their fixed costs. The next proposition establishes the result formally.

Proposition 4 Consider two banks with the same headquarters location and the same realization of id-

iosyncratic local taste shocks, {ϕjℓ}. Suppose that Bank 2 is equally more productive than Bank 1 in both

services so
zD2
zD1

=
zL2
zL1

> 1 and that Assumption 1 holds. Among locations with the same deposit abundance

αℓ ≡
AD

ℓ

AL
ℓ

, there is a cutoff ψ̄ such that

• if ψℓ = ψ̄ then n2ℓ = n1ℓ,

• if ψℓ > ψ̄ then n2ℓ > n1ℓ or n2ℓ = n1ℓ = 0, and

• if ψℓ < ψ̄ then n2ℓ < n1ℓ or n2ℓ = n1ℓ = 0.

The proposition says that, controlling for motives related to the mismatch between deposits and loans

(e.g. relative bank productivities across services, zD2 /z
D
1 = zL2 /z

L
1 , or deposit abundance, αℓ), for any two

banks there is a cutoff level for the exogenous fixed cost at which the two banks open the same number of

branches. For locations with higher local exogenous fixed cost, the more productive bank operates more

branches; for locations with lower local fixed costs, the less productive bank operates more plants. This

form of sorting arises due to the span-of-control costs. While the more productive (or more appealing) bank

would earn higher profits per branch in any location, the more productive bank also has a higher marginal

span-of-control cost from operating an additional branch. As a result, a given percentage difference in the

exogenous fixed cost across locations implies a smaller proportional change in a large bank’s total fixed cost.

In contrast, less productive (or less appealing) banks are less encumbered by span-of-control concerns since
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they operate only a small number of branches and so their marginal span-of-control cost is small.37 Because

exogenous fixed costs are related to local land rents and factor prices and these in turn are positively related

to local income and population density, this prediction implies that banks sort across all these dimensions.

3.3.3 Mismatch Sorting

Third, banks tend to place branches in locations where there is a good match between the funding needs

of the bank and the relative demand for deposits and loans. Banks try to reduce the mismatch between

deposits and loans to reduce their dependence on expensive wholesale funds. Banks that need deposits, i.e.,

those with high dependence on wholesale funds, are more likely to go to places that disproportionately want

to use banks for deposits. We name this, we believe novel, form of sorting, “mismatch sorting”.

Define deposit abundance as in the previous proposition, namely αℓ ≡ AD
ℓ /A

L
ℓ . The ratio αℓ summarizes

household demand for deposits relative to loans, as well as competition from other banks. The following

proposition establishes mismatch sorting.

Proposition 5 Consider two banks with the same span of control cost σ1 = σ2 and the same efficiency of

processing deposits and loans, θD1 = θD2 and θL1 = θL2 . Assume that Bank 2 is more reliant on wholesale

funding than Bank 1, so ω2 > ω1, then

1. there are cutoffs ᾱ ≥ α such that

• if αℓ > ᾱ and QD
2ℓ ≥ QD

1ℓ then n2ℓ > n1ℓ or n2ℓ = n1ℓ = 0,

• if αℓ < α and QL
1ℓ ≥ QL

2ℓ then n1ℓ > n2ℓ or n2ℓ = n1ℓ = 0.

2. If distance for lending is the same as distance for borrowing, i.e., κD(n) = κL(n), ∀n, then there

is a single cutoff α̂ such that if local appeal in a location is the same across banks and uses, i.e.,

QD
1ℓ = QD

2ℓ = QL
1ℓ = QL

2ℓ, then

• if αℓ > α̂ then n2ℓ > n1ℓ or n2ℓ = n1ℓ = 0,

• if αℓ < α̂ then n1ℓ > n2ℓ or n2ℓ = n1ℓ = 0.

The result implies that if there are two similar banks but one of them is more reliant on wholesale

funding, that bank is more likely to open branches in areas with high deposit abundance, αℓ. For example,

banks with headquarters in locations that have a high demand for loans (e.g. cities with many productive

firms and high real estate costs) expand more into locations where they can collect relatively more retail

37The assumptions in Proposition 4 can be weakened. zD2 > zD1 and σ2

zD2
> σ1

zD1
are necessary and sufficient for sorting.

Lemma 3 showed that Assumption 1 is sufficient for the latter to hold among every pair of banks with the same headquarters and

idiosyncratic shocks. A weaker condition that is sufficient for there to be sorting between two banks is that log h′(N2)−log h′(N1)]
logN2−logN1

is larger than the upper bound on the elasticities of marginal transport costs. There are examples, such as h(N) = Na for large
enough a, in which there is sorting among every pair, and examples in which the condition holds among banks larger than some
threshold, e.g., h(N) = eaN , so that there is sorting among large banks but not necessarily among small ones.
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deposits. That is, the branch portfolio of banks is designed, in part, to reduce the mismatch between

deposits and loans.

In Section 4 we turn to the data to provide evidence of the two forms of sorting we have characterized.

Before doing so we discuss how a bank’s investment in its appeal to customers affects its scale and generates

spillovers across branches.

3.4 Bank-Level Investments and Spillovers Across Branches

A bank can make investments that improve its appeal to depositors and borrowers. These investments entail

bank-level costs that affect the appeal of all its branches and therefore are more profitable for larger banks.

Naturally, as banks grow due to, say, an increase in residual demand for deposits or loans in a particular

location, the resulting investments in the bank’s appeal affect the bank’s operations in all its locations.

Hence, cross-branch spillovers are not only the result of the two forms of sorting described above but also

of bank-level investments in appeal that depend on its scale.

Note that a bank’s total deposits and total loans can be expressed as Dj = Q̄DD(rDj )BD
j and Lj =

Q̄LL(rLj )BL
j , where

BD
j ≡

∫
AD

ℓ J
D
jℓϕjℓκ

D(njℓ)dℓ,

BL
j ≡

∫
AL

ℓ J
L
jℓϕjℓκ

L(njℓ)dℓ.

BD
j and BL

j summarize a bank’s geographic footprint and are sufficient (along with the processing costs θDj
and θLj ) to determine the bank’s choices of appeal (Q̄D

j , Q̄
L
j ), interest rates, total deposits, total loans, and

its wholesale funding.

We now characterize how changes in a bank’s demand, manifested in changes to BD
j and BL

j , affect a

bank’s investments in appeal and determine a bank’s overall scale of deposits and loans. Any change in BD
j

and BL
j can be decomposed into two components, a pure scale effect in which the two shift in proportion,

and a shift in the relative demand for deposits or loans. We study the effects of each in turn.

3.4.1 Returns to Scale

Suppose that residual demand rises for both deposits and loans in some locations where a bank operates.

Namely, AD
ℓ and AL

ℓ both increase so that, holding the bank’s branch locations fixed, BD
j and BL

j rise by

the same proportion. Proposition 6 shows that the impact on a bank’s appeal and on the incentives to open

branches (as summarized by zDj and zLj ) can be summarized by the curvature of the cost of investments in

appeal, namely,

εCj =
d2

dt2
C(tQ̄D

j , tQ̄
L
j )

d
dtC(tQ̄

D
j , tQ̄

L
j )

∣∣∣∣∣
t=1

.
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Proposition 6 Suppose that d logBD
j = d logBL

j ≡ d logB. Then,

d log Q̄D
j = d log Q̄L

j = d log zDj = d log zLj = d logDj = d logLj =
1

εCj
d logB,

and there is no change in the bank’s wholesale funding intensity or interest rates.

Clearly, if the cost of appeal is close to linear, so εCj is close to zero, the bank responds to increased

demand by strongly scaling up its investment in appeal. In contrast, if the cost function is very convex,

so εCj is large, the incremental investment is minimal. Changes in the bank’s incentives to operate more

branches are driven solely by changes in its investment in appeal.

These arguments imply that banks whose headquarters are located in, or close to, big cities where overall

residual demand is high should, all else equal, make larger investments in customer appeal. The increases in

demand generated by the bank’s enhanced appeal in turn increase the incentives to open more branches and

invest even more in appeal. Hence, investments in bank-level appeal lead to returns to scale and exacerbate

the advantage provided by market access.38 In fact, in the deregulation episode of the 1980s and 90s, banks

that started in large states, like Bank of America in California, or large cities, like Citibank or Chase in

New York, ended up growing tremendously.

While the results above analyze the case of identical proportional increases in demand for deposits and

loans, we now proceed to analyze the case where the increase is unbalanced.

3.4.2 Specialization Through Investments vs. Mismatch Sorting

Suppose now that some locations where a bank operates increase their residual demand for loans relative

to deposits so that, holding fixed the bank’s branches, BL
j rises relative to BD

j . How does this change affect

the bank’s incentives to shift its footprint toward deposit-abundant locations versus locations with more

lending opportunities?

Mismatch sorting implies that, because more loans make the bank more reliant on wholesale funding,

the bank has stronger incentives to raise deposits elsewhere and weaker incentives to make loans. Namely,

ρD(ωj) and ρ
L(ωj) both rise. However, investments in appeal generate an additional effect. Namely, higher

demand for loans gives the bank an incentive to increase investments in loan appeal, raising Q̄L
j relative to

Q̄D
j . Hence, through this channel, higher demand for loans in one location increases lending elsewhere.39

Which of these opposing forces dominates depends on three elasticities. First, the elasticity of the relative

38In Appendix C.3 we show that banks that entered with headquarters in high-density counties grew more than banks
headquartered in low-density counties.

39Note that this investment channel was shut down in Proposition 5 since the proposition compared banks’ presence in a
location conditional on their local loan and deposit appeal.
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shadow value of deposits and loans (λDj /λ
L
j ) with respect to wholesale funding intensity, given by

ελj ≡
d log

(
λDj /λ

L
j

)
d log (1 + ωj)

.

Second, the elasticity of the ratio of of local deposits demanded to local loans demanded with respect to

wholesale funding intensity, given by εXj where

εXj ≡
d log

[
D
(
rDj

)
/L
(
rLj

)]
d log(1 + ωj)

.

Lemma 2 implies that εXj ≥ 0 and ελj +ε
X
j ≥ 0, where each inequality is strict in the region where R′(ωj) > 0.

Further, in the empirically relevant case of imperfect pass-through of shadow costs into interest rates, ελj > 0.

Finally, the elasticity of complementarity of the cost of appeal, given by

χj =
d logCD/CL

d log Q̄D/Q̄L
,

where CD and CL denote the derivatives of C(·) with respect to its first and second arguments, respectively.

Since C(·) is convex, χj ≥ 0.40

Proposition 7 characterizes how the bank’s incentives to seek out deposits versus loans change in response

to changes in BL
j /B

D
j , as a function of these three elasticities.

Proposition 7 A bank’s profit maximization implies that

d log
zLj

zDj
= −

[
ελj (2 + χj) + εXj (1 + χj)− 1

ελj + εXj (1 + χj) + χj

]
d log

BL
j

BD
j

,

and

d log
Lj

Dj
=

[
1−

ελj + εXj (1 + χj)− 1

ελj + εXj (1 + χj) + χj

]
d log

BL
j

BD
j

.

Note that, if ελj , ε
X
j , and χj are sufficiently large, then the term in brackets in the first equation in

Proposition 7 is positive, and the term in brackets in the second equation is positive but less than one.

Hence, in this case, mismatch sorting dominates the specialization motive. That is, more local demand for

loans increases the bank’s incentives to seek out deposits (zD rises relative to zL), and the ratio of total loans

to total deposits rises less than one-for-one with the increased demand. Intuitively, if ελj and εXj are large,

the augmented need for wholesale funding increases the profitability of deposits relative to loans. Namely,

the mismatch sorting effect is strong. In addition, if χj is large, it is costly to change the bank’s relative

appeal. Hence, the specialization effect is weak.

40For example, if C(Q̄D, Q̄L) =
[
(Q̄D)a + (Q̄L)a

]b/a
, with a, b > 1, then χj = a− 1.
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A useful example of the implications of Proposition 7 is the case in which the bank makes a single

investment Q̄j that applies to all customers regardless of whether they seek deposits or loans. So, let

C(Q̄D
j , Q̄

L
j ) = C̃(max{Q̄D

j , Q̄
L
j }), which implies that Q̄D

j = Q̄L
j = Q̄j and an elasticity of complementarity

equal to infinity, χj = ∞. In this case, mismatch sorting always dominates, since the only shift in incentives

to attract deposits relative to loans comes from changes in wholesale funding intensity. Hence, in this

example, higher local demand for loans always causes the bank to seek out more deposits.41

An implication of the dominance of mismatch sorting when these elasticities are sufficiently large is that,

all else equal, banks headquartered in locations that have more lending opportunities are more likely to

expand to deposit-abundant locations than banks headquartered in deposit-abundant locations. We now

turn to contrasting the empirical implications of our model with the evidence on the evolution of the banking

industry during its spatial deregulation.

4 Sorting in the Data

4.1 Evidence of Span-of-Control Sorting

We begin by exploring how different banks set up branches across US counties. In Figure 7, we consider

branching patterns in 1981 and 2006, the beginning and end of our sample. We split banks into three

size groups: the bottom 50% of banks, the 50th-90th percentile of banks, and the top 10% of banks by

total deposits. We study the distribution of branches within each size group across four population density

groups: the bottom 50%, 50th-75th percentile, 75th-95th percentile, and 95th-100th percentile. Span-of-

control sorting then implies, since dense locations also have high rents and, more generally, high fixed costs

of setting up branches, that smaller size groups would locate disproportionately in the least dense counties,

while the larger size groups would locate disproportionately in the most dense counties (Proposition 4).

Figure 7 confirms the existence of this form of spatial sorting. In 1981, 44% of branches of the smallest

banks could be found in counties in the bottom half of the population density distribution. Only 8% of their

branches could be found in the top 5% of population-dense counties. In contrast, only 6% of the largest

banks’ branches could be found in the low-density counties, while 48% of their branches could be found in

the counties with the highest density. The intermediate size group’s branches are more evenly spread out

in terms of county density.

The largest banks experienced a shift in their branching patterns by 2006. The top 10% of banks reduced

their share of branches in the densest 5% of counties by about 8 percentage points, while the share of their

branches in the bottom 50%, 50-75th percentile, and 75-95th percentile of counties increased by 1.1pp, 2pp,

41Another useful example comes at the other extreme. Suppose that a bank can invest separately in the appeal of different
types of loans. For example, it could invest in appeal for mortgage loans, commercial loans, trade credit, or others. In such a
case, more local demand for one of those types of loans would lead the bank to specialize more in that type of loan, because
any changes in wholesale funding would have the same effect on all types of loans. That is, mismatch sorting is a countervailing
force to specialization between total loans and total deposits, but it is not a countervailing force to specialization among loan
types (or among deposit types).
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Figure 7: This figure shows the distribution of bank branches across population density bins and across
bank size bins. Bank size bins are the bottom 50%, the 50-90th percentile, and the top 10% of banks by
total deposits. Density bins are the bottom 50%, the 50-75th percentile, the 75-95th percentile, and the
top 5% of counties by population density. Colored bars represent branch distributions in 1981, while black
unfilled bars represent branch distributions in 2006.

and 4.5pp, respectively. Changes in the other two groups are less pronounced. The intermediate bank size

group also increased their share of branches in the bottom 50% of counties, although the decline in the

high-density counties was more spread out. The smallest 50% of the banks tended to spread geographically,

with slightly more presence in the densest and least-dense counties. Thus, sorting weakened between 1981

and 2006. The change was largely driven by the largest banks increasing their branch share in counties

with densities below the top 5%. If large banks are more productive, and if dense counties exhibit higher

branching costs, then the patterns displayed in Figure 7 specifically suggest a decline in span-of-control

sorting.

We now turn to a more rigorous study of the importance of span-of-control sorting and its decline over

time. The purpose of this exercise is to explore whether banks that were initially productive, and therefore

large, were relatively more present in the densest locations and gradually expanded into less dense counties.

We measure sorting patterns using a regression given by

logDensityjst = βt logDep/Branchj0 + Fixed Effects + εjst, t = 1981, . . . , 2006 (16)
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where, for each bank j branching in state s at time t, their branch density is defined as

logDensityjst =
∑
c∈s

BranchSharejct × logDensityct.

Here, BranchSharejct is bank j’s share of branches in county c relative to their total number of branches in

state s at time t and logDensityct is the log of the population density of county c at time t. We use deposits

per branch of bank j, Deposits/Branchj0 to proxy for bank j’s productivity in the first year they enter the

sample. All results are similar if we use total deposits instead of deposits per branch to proxy for a bank’s

productivity.42

We consider increasingly restrictive fixed effects in our specification. First, we use state × year fixed

effects to explore sorting patterns within a state at a point in time. Next, we use state × headquarter

state × year fixed effects to account for out-of-state branching effects. Finally, we use state × headquarter

state × headquarter commuting zone × year fixed effects, which effectively assess sorting among banks

headquartered in the same commuting zone (e.g. San Francisco) that have branches in a given target state

(e.g. Oregon) in a given year (e.g. 1993). This specification is the most consistent with our theory, which

predicts span-of-control sorting holding fixed the headquarter location of each bank.

A positive βt coefficient is consistent with span-of-control sorting. It implies that, when banks expand

into a new state, high-productivity banks locate in denser areas, while less productive banks locate in low-

density areas.43 The value of βt measures the magnitude of spatial sorting. We report the results graphically

in Figure 8. Panel (a) reports the results for state × year fixed effects, panel (b) reports the results for state

× headquarter state × year fixed effects, and panel (c) reports the results for state × headquarter state ×
headquarter commuting zone × year fixed effects. We report each estimate β̂t along with its 90%, 95%, and

99% confidence intervals. Standard errors are clustered at the bank level.

Two results emerge. First, the estimated coefficient β̂t is positive and significant at the 1% level for each

time period and each specification, providing support for the existence of span-of-control sorting. The last

two specifications in particular alleviate concerns that sorting patterns are driven by headquarters choice,

since we are comparing sorting in a target state among firms with the same headquarter location. We

also conducted a pooled analysis consisting only of out-of-state banks to further confirm the existence of

span-of-control sorting in Table C.1 in the Appendix.

Second, there is a stark decline in β̂t over time for all specifications. The magnitudes are large. In 1981,

a 10% increase in the deposits per branch of a bank would imply a 2.1-4.3% increase in the branch-weighted

population density of their active counties. By 2006, the same increase in deposits per branch would imply

a 0.6-1.4% increase in the branch-weighted population density — a decline of approximately two-thirds.

42Note that deposits per branch is strongly correlated with bank size, which we document in Figure C.1 the Appendix. To
verify that our results are robust to the choice of productivity proxy, we also conduct our analysis using bank j’s initial size,
measured as the log of their total deposits, in Figure C.2 in the Appendix.

43Note that, in standard heterogeneous firm models, more productive firms serve all the markets that low productivity firms
serve, and more. Namely, in those models, the marginal low-density markets are not served by the less productive firms. Hence,
those models predict a negative βt.
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Figure 8: This figure reports the yearly regression coefficients for equation (16). Panel (a) uses state-
by-year fixed effects, panel (b) uses state-by-headquarter state-by-year fixed effects, and panel (c) uses
state-by-headquarter commuting zone-by-year fixed effects. Standard errors are clustered at the bank level.

Given the patterns in the raw data shown in Figure 7, we interpret this result to imply that large banks

expanded heavily into lower-density counties over time.

4.2 Connecting Mismatch Sorting to the Decline in Span-of-Control Sorting

Why did span-of-control sorting decline over time? Our theory naturally rationalizes these patterns. Span-

of-control sorting implies that large banks are located in denser locations while smaller banks are located

in less dense areas. However, because these denser locations demand more loans than deposits, large banks

use wholesale funding more intensively, which limits their profitability. The main effect of geographic

deregulation is to allow banks to open branches in new locations. Large banks take advantage of this new

regulatory environment by opening branches in locations where they face a relatively large demand for

deposits. This is exactly what we have termed mismatch sorting: large banks expand to locations that

reduce their reliance on wholesale funding. Since locations with large deposit abundance are less dense, the

result is a reduction in span-of-control sorting.

The above argument requires us to show several important missing pieces of evidence. First, we need

to show that denser areas are indeed less deposit-abundant. Second, we need to show that banks in dense

locations used more wholesale funding. Third, we need to provide evidence that, as predicted by mismatch
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sorting, these banks expanded into more deposit-abundant locations. Namely, that deregulation motivated

these banks to open relatively more branches in deposit-abundant locations even after controlling for other

bank characteristics like size and distance to headquarters. Finally, we need to show that large banks’

reliance on wholesale funding declined as banks expanded in space, and that this effect was driven by banks

with more exposure to wholesale funds and through their expansion into deposit-abundant counties. We

present this evidence throughout the remainder of this section.

4.2.1 Dense Counties are More Loan Intensive

We start by providing evidence on the distribution of deposit abundance in space. We collect data on

two sources of loans. First, we collect data on small business loans from the Federal Financial Institutions

Examination Council’s Community Reinvestment Act (CRA) disclosures. Under the CRA, banks with

more than $1 billion in assets are required to disclose all loans to firms with gross revenues of less than

$1 million.44 These loans are reported at the census tract level, which we aggregate up to counties. The

data are available starting in 1995. Second, we collect county-level mortgage loan volumes from the Home

Mortgage Disclosure Act data (HMDA) starting in 1990.45

We measure deposit abundance (DepAbunct) as the ratio of total deposits to total originated loans within

a county, namely,

DepAbunct =
Depositsct

Mortgage Loan Volumect +CRA Small Business Loan Volumect
. (17)

The spatial mismatch sorting mechanism says that large banks expanded into deposit-abundant regions

to gain access to cheap retail deposits, which they could then transfer through their branch network to more

profitable lending markets. To understand if this mechanism can lead to the decline in sorting in response

to the geographic deregulation that we documented above, we need to study how deposit abundance varies

with county density. We document the relationship between population density and deposit abundance at

the county level using the following county-level regression,

logDepAbunct = β logDensityct + γ ′Xct + γst + εct. (18)

We report the results in the form of a binscatter plot in Figure 9. Panel (a) uses our preferred measure of

loans that combines mortgages and CRA loans, while panel (b) only uses mortgage loans. Regardless of the

measure, we find a strong and significant negative correlation between deposit abundance and population

44While this restriction omits some existing banks, Greenstone et al. (2020) estimate that FFIEC data cover about 86% of
the small business loan market.

45For years that are missing from our primary sample, we backfill the loan data. Since our analysis draws heavily on
cross-sectional variation across counties rather than across time, we are not particularly concerned with measurement error.
Nevertheless, we conduct several of our analyses using data from 1990-2006 to ensure that our results are robust to excluding
the back-filled years. We also show in Appendix Figure C.3 that the autocorrelation in our deposit abundance measure is above
0.7 even with a five-year lag, which further validates our measure.
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(b) Mortgage Loans Only

Figure 9: This figure reports results for regression equation (18) in the form of binscatters. Panel (a)
uses our preferred measure of loans that combines mortgages and CRA loans, while panel (b) only uses
mortgage loans. In each plot, the yellow triangles consider the raw relationship between deposit abundance
and population density, the blue squares add in state × year fixed effects to control for institutional and
fundamental differences across states, and the red diamonds add in demographic controls such as income as
well as age and race demographics. The fitted red line reflects the linear relationship implied by the third
specification.

density. This holds with or without extensive demographic controls and state × year fixed effects. We report

regression results in Table C.2 in the Appendix and document that the relationship is highly significant across

specifications.

4.2.2 Banks with Loan Abundant Headquarters Use More Wholesale Funding Ex-Ante

Having established that denser locations are less deposit abundant, we now study whether banks that were

headquartered in counties with relatively more loan opportunities used more wholesale funding prior to

deregulation. To do so, we estimate

logWFEj,1981 = β logDepAbun
cHQ
j ,1981

+ γ ′
cXc,1981 + δ′jXj,1981 + Fixed Effects + εj , (19)

where logWFEj,1981 denotes the log of bank j’s wholesale funding exposure in 1981 and logDepAbun
cHQ
j ,1981

is a measure of deposits to loans for bank j’s headquarter county. We gradually add controls for the density

of a bank’s headquarters county and the size and deposits per branch of the bank, as well as a headquarter

state fixed effect. We present the results in Table I.
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Dependent Variable: logWFEj0

Mortgages + CRA Loans Mortgages Loans Only

(1) (2) (3) (4) (5) (6)

logDepAbun
cHQ
j 0

−0.238*** −0.112*** −0.053** −0.126*** −0.042*** −0.022**

(0.019) (0.018) (0.022) (0.009) (0.009) (0.011)

logDensity
cHQ
j 0

0.074*** 0.129*** 0.078*** 0.131***

(0.016) (0.019) (0.015) (0.019)

logDepositsj0 0.428*** 0.491*** 0.431*** 0.491***

(0.019) (0.025) (0.019) (0.025)

logDep/Branchj0 0.027 −0.027 0.016 −0.028

(0.024) (0.035) (0.024) (0.035)

HQ State FE ✓ ✓

Observations 9614 9611 9611 9647 9613 9613

R2 0.04 0.20 0.25 0.04 0.20 0.25

Table I: This table reports the results of regression equation (19). The dependent variable is log wholesale
funding exposure in the first year bank j appears in our sample. Independent variables are the log of bank
j’s headquarter county deposit abundance, the log of bank j’s headquarter county population density, bank
j’s log deposits, and bank j’s log deposits per branch, all measured in the first year bank j appears in our
sample. Standard errors are reported in parentheses and are clustered at the headquarter county level. *
p < 0.1 ** p < 0.05 *** p < 0.01.

We find that banks use less wholesale funding when they are headquartered in locations that are deposit-

abundant. Columns (1) and (4) only consider the relationship between wholesale funding exposure and

deposit abundance. In Columns (2) and (5), we add the density of a bank’s headquarters county. If dense

counties have more banks lending on the interbank market, then wholesale funding may be less costly to

obtain, which could drive the results. In addition, dense counties may also have more firms or households

looking to store longer maturity deposits, which could also increase the propensity for banks to borrow on

the wholesale market. We also include the bank’s size as a control in case large banks have better access

to wholesale funds. Columns (3) and (6) include headquarter state fixed effects, which absorb differences in

state-level characteristics such as differences in regulation. Consistent with mismatch sorting, even with all

these controls, the coefficient on deposit abundance remains negative and significant.
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4.2.3 High Wholesale Funding Banks Expand Into Deposit Abundant Counties

The previous two sections provide a motive for our mismatch sorting theory: banks that were limited to

lending opportunities in or near their headquarter county prior to deregulation had an incentive to expand

into deposit-abundant locations post-deregulation to ameliorate their use of wholesale funds. However,

identifying this sorting mechanism empirically is challenging because our theory only implies sorting through

one mechanism after holding fixed the others. In particular, Proposition 4 implies that high-productivity

banks sort into high-cost locations, but only after conditioning on banks’ distance from headquarters and

wholesale funding exposure, and only after holding fixed the deposit abundance of the locations in question.

Similarly, Proposition 5 implies that banks with higher exposure to wholesale funding sort into deposit-

abundant locations, conditional on bank productivity and size as well as the fixed cost of operating a branch

across locations. Therefore, an ideal empirical strategy should control for one form of sorting while allowing

the other to vary.

We therefore leverage the staggered and bilateral nature of the geographic deregulation episodes through-

out the 1980s and 90s to assess the importance of span-of-control and mismatch sorting. Our methodology

is designed to control for one type of sorting while allowing the other to vary. For example, compare banks

that are headquartered in a given location, e.g. San Francisco, that have similar wholesale funding exposure

prior to expansion but have variation in their deposits per branch (our proxy for bank productivity). When

these banks expand into a newly opened state, e.g. Oregon, we only look within counties that had similar

deposit abundance prior to the opening event but have variation in their population density (our proxy for

branching costs). If we find that the banks with higher deposits per branch are relatively more active in the

high-density counties, this constitutes evidence of span-of-control sorting.

Of course, since there could be many other reasons why banks expand into specific locations. Hence,

we also need to control for bank- and county-specific effects to isolate the effect of sorting. We measure

span-of-control sorting using the Poisson regression,

log(E[Branchesjct]) = βSOC logDep/Branchjs × logDensitych + γ logDistancejc

+ δjst + δcht + δs,cz,t,WFE10
js ,DepAbun10ch

+ εjct. (20)

Here, Dep/Branchjs is the deposits per branch of bank j in the year before bank j’s headquarter state was

permitted to expand into state s, and Densitych is the density of county c in the year before county c’s

state became open to banks from headquarter state h. A positive estimate of βSOC indicates that banks

with higher deposits per branch place relatively more branches in high-density counties on average, which

we interpret as span-of-control sorting.

As discussed, we control for several potential concerns with our specification using a host of fixed effects.

δjst is a bank × state × year fixed effect, which absorbs unobservable characteristics between bank j and

state s in each year. For example, if high productivity bank j prefers to lend to manufacturing firms, and

firms in low density locations in state s tend to be biased toward manufacturing, bank j may choose to
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locate their branches in a way that appears to violate span-of-control sorting; this fixed effect controls for

such a force. Second, δcht is a county × headquarter state × year fixed effect, which absorbs unobservable

characteristics between county c and headquarter state h. For example, if county c is part of a metropolitan

area that crosses over into state h, it may receive preferential treatment among banks headquartered in

state h, irrespective of its fundamentals.

Finally, central to our analysis is the last fixed effect, δs,cz,t,WFE10
js ,DepAbun10ch

, which is a target state ×
headquarter commuting zone × year × bank wholesale funding exposure decile × county deposit abundance

decile fixed effect.46 This fixed effect implies that we estimate the coefficient of interest from variation across

banks with similar wholesale funding exposure in the same headquarter commuting zone that expand into

counties with similar deposit abundance in the same state in the same year.47 This allows us to interpret

βSOC as a measure of span-of-control sorting consistent with Proposition 4.

We conduct a similar exercise to test for the presence of mismatch sorting. Our specification for this

test is

log(E[Branchesjct]) = βMM logWFEjs × logDepAbunch + γ logDistancejc

+ δjst + δcht + δs,cz,t,Dep/Branch10js ,Density10ch
+ εjct. (21)

The interpretations of the variables and the fixed effects are analogous to the span-of-control sorting from

above. An estimate of βMM > 0 implies that banks with higher wholesale funding exposure tend to place

more branches in relatively deposit-abundant locations, conditional on span-of-control sorting.48 This is

precisely the mismatch sorting channel we describe in Proposition 5.

The stacked nature of (20) and (21) allows banks and locations to change categories across events, which

is another benefit of our approach. For example, a bank that starts in the 8th deposits-per-branch decile

before expansion and ends in the 9th decile will now be compared to other 9th decile banks in subsequent

opening events. To keep the focus on bank characteristics around the expansion period, we limit the time

frame after a bilateral opening event to 5 years post-opening. We explore the longer-term effects by looking

at the 6-10 year windows in Table C.13 in the Appendix, which we discuss at the end of this section.

While our approach to measuring the types of sorting is fairly saturated, one concern is that the granular

fixed effects require us to restrict our analyses to states that have more than 10 counties. Additionally,

restricting the analysis to banks headquartered in the same commuting zone with similar characteristics

reduces the number of banks we include in our analysis. To ensure that our estimates are robust to these

concerns, we estimate a third specification that linearly accounts for both sorting forces simultaneously,

46We use commuting zones rather than counties to increase power. When commuting zones extend across state boundaries,
we split the commuting zone into two regions and only consider the banks within the commuting zone-headquarter state pair.

47Note that there are some cases where a bank holding company’s headquarter location is not the same as its member banks.
Given the importance of comparing banks in the same location, we remove these banks, as well as banks whose headquarter
location changes during the sample, for this portion of our analysis.

48Technically, Proposition 4 conditions on bank productivity as well as bank size in order to control for span-of-control costs.
We estimate specification (21) with an additional size decile fixed effect in Table C.10 and find similar results.
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namely,

log(E[Branchesjct]) = βSOC logDep/Branchjs × logDensitych + βMM logWFEjs × logDepAbunch

+ γ logDistancejc + δjst + δcht + δs,cz,t + εjct. (22)

We report our results for specifications (20)-(22) in Table II. Column (1) reports the results for specification

(20), column (2) reports the results for specification (21), column (3) reports the results for specification

(22), and column (4) repeats column (3) but adds in logDep/Branchjs × logDepAbunch and logWFEjs ×
logDensitych terms to ensure that the results in column (3) are not driven by variation not related to

our two sorting forces. We find evidence for both span-of-control sorting and mismatch sorting across all

specifications. The estimated coefficients are consistently significant at the 5% level, and are often significant

at the 1% level. Additionally, we estimate a negative coefficient on distance from headquarters, which is

also consistent with our theory.

We conduct several robustness tests to validate our findings. We begin by addressing potential problems

with sample selection. First, as we discuss in Section 2, we drop banks whose total deposits are less than

half their liabilities to avoid banks with unorthodox business models, accounting for approximately 3% of

bank-year observations. Table C.5 shows that adding them back in does not change the results.

Second, in Section 2 we highlight that some banks were grandfathered into the Bank Holding Company

Act of 1956, implying that some out-of-state branching existed prior to the deregulation of the 1980s and

90s. Although these branches are important when accounting for bank-level decisions, they may interfere

with our empirical estimates. We therefore repeat our analysis using only branches that banks open after a

bilateral opening event. Table C.6 shows that only considering these branches does not change the results,

and that their statistical significance is enhanced further.

Third, we address potential concerns that our results reflect measurement error due to the back-filling

of our loan-level data. We present results in which the sample is truncated in 1990 in Table C.7. We

find significant estimates for both sorting forces across all specifications, suggesting that our results are not

driven by this type of measurement error.

We then consider how our choice of covariates affects the results. We conduct our analysis using mortgage

loans instead of total loans (Table C.8), total deposits instead of deposits per branch (Table C.9), and banks’

initial deposits per branch instead of their deposits per branch in the year prior to a bilateral opening event

(Table C.11). Of the 9 additional estimates per sorting force, only 1 becomes insignificant for mismatch

sorting (column (2) in Table C.8) and only 2 become insignificant for span-of-control sorting (columns (1)

and (4) in Table C.9). Nevertheless, the point estimates retain the correct sign in all specifications.49

49It is natural that these alternative measures are somewhat noisier, as the connection with the objects we intend to measure
is looser than our baseline measures. For the loan variables, small business lending is more local than mortgage lending due to
the importance of bank-firm relationships (Petersen and Rajan, 2002; Berger et al., 2005), and these loans are less likely to be
securitized (Dou, 2021). As such, solely using mortgage loans instead of combined loans overestimates the relative demand for
deposits to loans in a location. For bank productivity, deposits per branch and total deposits are both imperfect, but highly
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Dependent Variable: Number of Branches

(1) (2) (3) (4)

logDep/Branchjs × logDensitych 0.414*** 0.532*** 0.349***

(0.136) (0.078) (0.096)

logWFEjs × logDepAbunch 0.235** 0.144** 0.267***

(0.103) (0.061) (0.080)

logDep/Branchjs × logDepAbunch −0.410**

(0.162)

logWFEjs × logDensitych 0.068*

(0.041)

logDistancejc −0.781** −1.203*** −1.318*** −1.332***

(0.359) (0.299) (0.265) (0.268)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Dep/Branch Decile × Density Decile FE ✓

Obs. 5629 5172 10647 10647

Pseudo-R2 0.65 0.65 0.70 0.70

Table II: This table reports the results of regression equations (20) [Column (1)], (21) [Column (2)], and
(22) [Columns (3) and (4)]. Independent bank and county variables are measured in the year prior to a
bank-state pair opening event. We consider observations 0-5 years after the opening event occurs. Standard
errors are reported in parentheses and are clustered at the bank-county level. * p < 0.1 ** p < 0.05 ***
p < 0.01.

Banks that are more exposed to wholesale funding prior to an opening event are more likely to open new

branches in deposit-abundant counties, as we showed above. Once they do so, their reliance on wholesale

funding should decrease, and their subsequent expansion should be into higher-density counties with more

lending opportunities. Hence, in Table C.12, we also explore how our estimates change when we allow for

bank variables to change over time rather than holding them fixed at their pre-opening levels. Although

correlated, proxies of a bank’s marginal costs of processing deposits and loans.
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our model is static, the results are consistent with this interpretation.50

In the next section, we study whether a bank’s spatial expansion, and particularly expansion into deposit-

abundant counties, is associated with a decline in wholesale funding exposure, as our theory suggests.

4.2.4 The Impact of Geographic Expansion on Relative Wholesale Funding Exposure

We have shown that banks with high wholesale funding exposure will open branches in deposit-abundant

counties when given the chance. We now provide further evidence for this channel by exploring the dynamics

of their wholesale funding exposure following a geographic expansion. Our baseline specification takes the

form

logWFEj,t+h − logWFEj,t−1 = βh1{∆Countiesjt > 0}+ γ ′
hXjt + δth + δjh + εjt. (23)

We include controls for log of bank j’s total assets, the log of bank j’s lagged deposits and non-deposit

liabilities, the log change in bank j’s number of branches, and three lags of the expansion indicator,

1{∆Countiesjt > 0}. A negative βh coefficient implies that when bank j expands geographically between

time t + h and t − 1, their wholesale funding exposure declines by approximately β relative to banks that

did not expand. We consider five periods before and after the expansion at time t, h = −5, . . . , 5.51

We then estimate how the effect of geographic expansion varies across banks with different levels of

wholesale funding exposure. As we demonstrated in the previous section, banks that have a relatively high

exposure to wholesale funding are more likely to expand into deposit-abundant locations. As such, we

should expect these banks to experience larger declines in their wholesale funding exposure relative to low

wholesale funding banks. We estimate this relative effect using the regression

logWFEj,t+h − logWFEj,t−1 = βh1{∆Countiesjt > 0}+ βWh 1{∆Countiesjt > 0} ×HighWFEjt−1

+ γ ′
hXjt + δth,HighWFEjt−1

+ δjh + εjt. (24)

where HighWFEjt−1 is an indicator for whether bank j was in the top quartile of wholesale funding exposure

at time t− 1. We interact the time fixed effect with this indicator to absorb any level effects of banks that

are heavy users of wholesale funds in the previous period. We present the results for specifications (23) and

(24) in Figure 10.

We find that expansion is, on average, associated with a decline in wholesale funding exposure. Using

the pooled specification (23), expansion leads to a cumulative decline of 4.5% in wholesale funding exposure

50All estimates are positive and significant except for the estimate of mismatch sorting in column (2). Although the insignif-
icant estimate is positive, it suggests that the mismatch sorting force weakens over time since the estimate is only a third of the
size of the estimate in column (2) in our baseline results. We test for this explicitly in Table C.13, where we estimate our main
specifications (as in Table II) 6-10 years after each bilateral opening event rather than 0-5 years after. Although span-of-control
sorting remains positive and significant, mismatch sorting weakens and becomes insignificant for all specifications.

51Due to the presence of substantial outliers in the dependent variable, we trim our dependent variable at the 1% and 99%
level. These outliers are predominantly banks with wholesale funding exposures close to 0, which result in excessive growth
rates.
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Figure 10: This figure plots the regression estimates for equations (23) and (24). Estimates are reported for
time horizons h = −5, . . . , 5, with h = −1 normalized to 0. Panel (a) reports the level effects of geographic
expansion relative to non-expanding banks for the pooled sample (gray), banks in the bottom three quartiles
of wholesale funding exposure (blue), and banks in the top quartile of wholesale funding exposure (red).
Panel (b) reports the relative effect between high and low wholesale funding exposure banks. Standard
errors are adjusted for heteroscedasticity. 90% confidence intervals are reported as solid lines, while the 95%
confidence intervals are reported as dotted lines.

in the first two years after expansion. The effect shrinks to about 2% in the following year, but remains

significant. There are no statistically significant effects after the second year.

The pooled estimates mask substantial heterogeneity between low- and high-wholesale-funding-exposed

banks. Splitting the sample by quartile, we find that the banks with the highest wholesale funding exposure

experience an approximately 8-9% decline in their wholesale funding exposure after expansion. Unlike the

pooled sample, these banks have significantly lower wholesale funding exposure for 5 years after expansion,

although there is still some reversion toward zero. In contrast, the banks with the lowest wholesale funding

exposure do not experience a decline in wholesale funding exposure, and even increase their wholesale

funding slightly a few years after expansion. Pre-trends are close to zero and insignificant for both groups

of banks.

Panel (b) plots the relative effect (βWh ) for each time period. Consistent with the total effects in panel (a),

we find a persistent relative negative effect on high wholesale funding banks. Again, there is no significant

pre-trend, suggesting that the change in wholesale funding exposure is due to the geographic expansion.

Our theory suggests that banks expand into high deposit abundance locations, which the previous section

showed was done by banks with high levels of wholesale funding exposure, in order to reduce their reliance
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on wholesale funding. We now verify that banks that expand into counties that are deposit abundant

experience a larger decline in their wholesale funding exposure than banks that expand into locations with

relatively more lending opportunities. To test this, first define DepAbunnewjt to be the branch-weighted

deposit abundance of the locations of bank j’s new branches, conditional on expanding geographically at

time t. Let also DepAbunnew,H
jt denote an indicator equal to 1 if new branch deposit abundance DepAbunnewjt

is in the top quartile at time t, DepAbunnew,M
jt an indicator for new branch deposit abundance in the middle

two quartiles, and DepAbunnew,L
jt an indicator for new branch deposit abundance in the bottom quartile.

We use these indicators to estimate a third specification given by

logWFEj,t+h − logWFEj,t−1 =
∑

k∈{L,M,H}

βkh1{∆Countiesjt > 0 and DepAbunnew,k
jt = 1}

+ γ ′
hXjt + δth,HighWFEjt−1

+ δjh + εjt. (25)

We are interested in both the level effects of new branch low and high deposit abundance expansion, βLh and

βHh , as well as the relative difference between the two. We plot the coefficients separately for h = −5, . . . , 5

in Figure 11a and the difference in the coefficients in Figure 11b.

We find that banks that expanded into the most deposit-abundant locations experienced a significant

decline in wholesale funding exposure for the first four years after expansion. In contrast, banks that

expanded into the least deposit-abundant locations do not exhibit significant changes in wholesale exposure.

The difference in the two effects is significant at the 5% level for the first four years after expansion. Hence,

banks with high wholesale funding usage reduced their exposure to wholesale funds upon expansion and

(given the composition effects we identify in the previous section) do so by expanding into deposit-abundant

locations. This is precisely the mismatch sorting force that emerges from our theory.

We explore the robustness of the results in this section among several dimensions. Given that we are

most interested in the relative effects of wholesale funding exposure and deposit abundance, we report our

robustness checks for the relative effects βWh and βHh − βLh . First, we vary our choice of expansion lags to

ensure that our results are robust to model specification in Figure C.4. We find very few differences across our

choices of lags. Second, in Figure C.5, we select on banks that never expand or only expand once to ensure

that serial expansions are not driving our results. While these results are noisier due to a large reduction in

sample size, we find broadly similar results. Third, in Figure C.6, we select on banks that expanded at some

point in the sample — since expanding banks may be systematically different from non-expanding banks,

this exercise rules out the possibility that bank-level differences are driving the effects. Again, our results

remain consistent. We conclude that, indeed, banks with higher wholesale funding exposure and banks that

expand into more deposit-abundant counties experience a large relative decline in their wholesale funding

exposure.
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Figure 11: This figure plots the regression estimates for equation (24). Estimates are reported for time
horizons h = −5, . . . , 5, with h = −1 normalized to 0. Panel (a) reports the level effects of geographic
expansion relative to non-expanding banks for banks whose new counties’ deposit abundance is in the
bottom quartile among expanding banks (blue) and banks whose new counties’ deposit abundance is in
the top quartile among expanding banks (red). Panel (b) reports the relative effect between high and low
deposit abundance expansion. Standard errors are adjusted for heteroscedasticity. 90% confidence intervals
are reported as solid lines, while the 95% confidence intervals are reported as dotted lines.

5 Conclusion

The spatial deregulation of the U.S. banking industry since the 1980s provides perhaps the most salient

evidence of the spatial sorting of banks in space. We have documented that the starting point was an industry

in which top banks had headquarters in dense counties with an abundance of investment opportunities but

relatively few deposits. This made them large, but also reliant on expensive wholesale funding that limited

their profitability. The initial allocation of banks exhibited sorting: denser, more expensive locations had a

larger presence of large banks, while less dense locations had a larger presence of small banks.

In Oberfield et al. (2024) we provide a theory that rationalizes this initial form of sorting for industries

with multi-plant firms. It shows that a model in which the cost of reaching consumers depends on their

distance to the firm’s closest plant, firms face fixed costs for setting up additional branches, and firms face

span-of-control costs that make managing more plants costly in terms of firm productivity, generates this

form of span-of-control sorting. We also showed that this was a clear pattern in the data for most industries

with multi-plant firms.

The same mechanisms can explain the initial allocation of banks across locations. However, the banking

industry has specific features that are essential to explaining the evidence for the deregulation episode. In
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particular, banks collect deposits and extend loans across heterogeneous locations, and the balance of loans

to deposits needs to be financed with relatively expensive wholesale funds. Hence, an important part of the

spatial branch location problem of banks is to match total deposits and loans. This leads to an additional

force for sorting in space that we have labeled “mismatch sorting”. This form of sorting makes banks open

branches in locations that are relatively abundant in deposits if they currently rely heavily on wholesale

funds, and in loan-abundant locations if they do not. We develop a spatial theory of bank competition in

space in which these two forms of sorting operate simultaneously.

The evidence of the deregulation period is well accounted for by the balance between these two forms

of sorting. Large banks with headquarters in large urban areas that used wholesale funding extensively

expanded into smaller locations, thereby reducing their reliance on wholesale funding. By doing so, they

displaced small banks that either exited or moved to denser locations. The ability to tap into the abundance

of deposits in smaller, less dense, locations allowed top banks to grow and make fixed-cost investments in

customer appeal that increase their profitability. The result is a large geographic expansion of top banks

into smaller locations and a reduction in overall sorting. Ultimately, these spatial patterns implied access

for consumers in small urban and rural areas to the technology and branch network of the top U.S. banks.

Furthermore, according to our theory, banks had no incentive to price discriminate against these new

customers.

Our theory of the spatial competition and expansion of banks abstracts from some potentially important

forces. First, we abstract from risk management and diversification motives. The spatial expansion of banks

could be, at least in part, related to the objective of diversifying the deposit and loan portfolios of banks

across industries and locations. Second, we do not micro-found the reasons why deposits are relatively cheap

but wholesale funding is relatively expensive, and increasingly so as banks use more of it. This could be the

result of government policies, like deposit insurance, but also the risk profile of large versus small banks, a

form of heterogeneity that we abstract from. In addition to abstracting from these forces, we also do not

provide an evaluation of the welfare impact of the spatial deregulation of the banking industry in the U.S.

Nor do we measure the importance of the spatial expansion of banks in generating these welfare gains. The

spatial banking framework we propose in this paper can certainly be used to do so in future work.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. We give here an argument for deposit rates. The argument for lending rates is virtually identical.

Consider a relaxed problem in which each bank can choose a separate price for consumers in every location,

and also choose which branch consumers in each location use. Then bank j’s relaxed problem would be

πj = sup

Wj , Dj , Lj , Oj , Q̄
D
j , Q̄

L
j ,

{Djℓ, Ljℓ, r
D
jℓ, r

L
jℓo

D
jℓ, o

L
jℓ}ℓ

∫ [(
rLjℓ − θLj

)
Ljℓ −

(
rDjℓ + θDj

)
Djℓ

]
dℓ−R

(
Wj

Dj

)
Wj

−
∑
o∈Oj

Ψo − w∗
jH(|Oj |)− w∗

jC(Q̄
D
j , Q̄

L
j )

subject to

Djℓ = TD
(
δoDjℓ,ℓ

)
QD

jℓA
D
ℓ D

(
rDjℓ
)

(26)

Ljℓ = TL
(
δoLjℓ,ℓ

)
QL

jℓA
L
ℓ L
(
rLjℓ
)

(27)

as well as (4), (5), (6), (7), and Wj = Dj − Lj . Let µDj be the multiplier on (6). Eliminating Djℓ by

substituting in the constraint Djℓ = TD
(
δoDjℓ,ℓ

)
QD

jℓA
D
ℓ D

(
rDjℓ

)
, the Lagrangian can be rearranged so that

rDjℓ, o
D
jℓ satisfy

max
rDjℓ,o

D
jℓ

(
µDj − rDjℓ − θDj

)
TD

(
δoDjℓ,ℓ

)
QjℓA

D
ℓ D

(
rDjℓ
)

Thus the solution to this relaxed problem is rDjℓ = argmaxr

(
µDj − r − θDj

)
D(r) and oDjℓ = argmaxo∈Oj T

D (δoℓ) =

argmino∈Oj δoℓ. Now note that it is feasible for the bank to implement this allocation in the original prob-

lem if it sets rDjo ≡ argmaxr

(
µDj − r − θDj

)
D(r). Since the household faces the same deposit rate at each

branch, they will simply choose the closest branch.

A.2 Proof of Lemma 3

Proof. Toward a contradiction, suppose that σ2 ≤ σ1. Then this will imply that bank 2 places weakly more

branches than bank 1 at each location. To see this, note that the FOC for bank 2’s branches at location ℓ

implies that either n1ℓ = 0, in which case n2ℓ ≥ n1ℓ, or n1ℓ > 0, in which case

JD
2ℓA

D
ℓ κ

D′(n2ℓ) +
zL2
zD2

JL
2ℓA

L
ℓ κ

L′(n2ℓ) ≤
ψℓ + σ2

zD2 ϕ2ℓ
<
ψℓ + σ1

zD1 ϕ1ℓ
= JD

1ℓA
D
ℓ κ

D′(n1ℓ) +
zL1
zD1

JL
1ℓA

L
ℓ κ

L′(n1ℓ) (28)
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Since κD′ and κL′ are both decreasing, this inequality can only hold if n2ℓ > n1ℓ. Thus either
∫
n2ℓdℓ =∫

n1ℓdℓ = 0, or
∫
n2ℓdℓ >

∫
n1ℓdℓ, a contradiction.

Now, suppose Assumption 1 holds. Let b denote the upper bound on the elasticities of κD′ and κL′, so

that

sup
u∈{D,L},n≥0

−nκu′′(n)
κu′(n)

≤ b ≤ inf
N≥0

Nh′′(N)

h′(N)
.

Let ζ ≡ zD2
zD1

=
zL2
zL1
> 1. Toward a contradiction, suppose that σ2/z

D
2 ≤ σ1/z

D
1 , or that σ2 ≤ ζσ1.

We will show that this implies that n2ℓ ≥ ζ1/bn1ℓ for each location. This clearly holds for n1ℓ = 0. If

n1ℓ > 0, then (28) implies that

ζ < ζ
zD1 J

D
1ℓA

D
ℓ κ

D′(n1ℓ) + zL1 J
L
1ℓA

L
ℓ κ

L′(n1ℓ)

zD2 J
D
2ℓA

D
ℓ κ

D′(n2ℓ) + zL2 J
L
2ℓA

L
ℓ κ

L′(n2ℓ)
=
βℓκ

D′(n1ℓ) + κL′(n1ℓ)

βℓκD′(n2ℓ) + κL′(n2ℓ)

where βℓ ≡ zD2 JD
2ℓA

D
ℓ

zL2 JL
2ℓA

L
ℓ

=
zD1 JD

1ℓA
D
ℓ

zL1 JL
1ℓA

L
ℓ

. Taking logs and using the fundamental theorem of calculus and the

definition of b gives

log ζ < −
∫ logn2ℓ

logn1ℓ

βℓκ
D′′(eu) + κL′′(eu)

βℓκD′(eu) + κL′(eu)
eudu

≤
∫ logn2ℓ

logn1ℓ

βℓκ
D′(eu)b+ κL′(eu)b

βℓκD′(eu) + κL′(eu)
du

= b (log n2ℓ − log n1ℓ)

Together, these imply either N2 = N1 = 0 or N2 > ζ1/bN1. If N2 > 0, we can derive the contradiction:

log(σ2/σ1) = log h′(N2)− log h′(N1) =

∫ logN2

logN1

euh′′(eu)

h′(eu)
du ≥

∫ logN2

logN1

bdN = b (logN2 − logN1)

> b
(
log ζ1/b

)
= log ζ

A.3 Proof of Proposition 4

Proof. The two banks’ first-order conditions for a location ℓ can be expressed as

JD
2ℓA

D
ℓ z

D
2 κ

D′(n2ℓ) + JL
2ℓA

L
ℓ z

L
2 κ

L′(n2ℓ)

JD
1ℓA

D
ℓ z

D
1 κ

D′(n1ℓ) + JL
1ℓA

L
ℓ z

L
1 κ

L′(n1ℓ)
=
ψℓ + σ2
ψℓ + σ1
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Letting α be the common value of
JD
jℓA

D
ℓ

JL
jℓA

L
ℓ

and let ζ =
zD2
zD1

=
zL2
zD1

> 1, this can be rearranged as

ακD′(n2ℓ) + κL′(n2ℓ)

ακD′(n1ℓ) + κL′(n1ℓ)
=

1

ζ

ψℓ + σ2
ψℓ + σ1

Note that since σ2 > σ1, the right-hand side is strictly decreasing in ψℓ. Further, the right hand side is

continuous in ψℓ, and since ζ > 1, there is a unique ψ̄ such that if ψℓ = ψ̄ then the right hand side is one,

and n2ℓ = n1ℓ. If ψℓ > ψ̄, the RHS is less than one, and since ακD′(·) + κL′(·) is decreasing, it must be that

n2ℓ > n1ℓ. Alternatively, if ψℓ < ψ̄, the RHS is greater than one and n2ℓ > n1ℓ.

A.4 Proof of Proposition 5

Proof. First, note that the envelope theorem and the fact that R(ω) is increasing and convex imply that

maxr
[
R(ω) + ω(1 + ω)R′(ω)− r − θD

]
D(r) is increasing in ω while maxr

[
r − θL −R(ω)− ωR′(ω)

]
L(r) is

decreasing in ω. As a result, ω2 > ω1 gives

λD2 D(rD2 ) > λD1 D(rD1 )

λL2L(rL2 ) < λL1L(rL1 )

Consider a location in which QD
2ℓ ≥ QD

1ℓ is the same and n1ℓ > 0. Letting xDjℓ ≡ QD
jℓλ

D
j D(rDj ) and xLjℓ ≡

QL
jℓλ

L
j L(rLj ), the FOCs imply

AD
ℓ x

D
2ℓκ

D′(n2ℓ) +AL
ℓ x

L
2ℓκ

L′(n2ℓ) ≤ ψℓ + σ2 = ψℓ + σ1 = AD
ℓ x

D
1ℓκ

D′(n1ℓ) +AL
ℓ x

L
1ℓκ

L′(n1ℓ)

This can be rearranged as

xD2ℓκ
D′(n2ℓ) +

1

αℓ
xL2ℓκ

L′(n2ℓ) ≤ xD1ℓκ
D′(n1ℓ) +

1

αℓ
xL1ℓκ

L′(n1ℓ)

and further as

κD′(n2ℓ) ≤
xD1ℓ
xD2ℓ

κD′(n1ℓ) +
1
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[
xL1ℓκ

L′(n1ℓ)− xL2ℓκ
L′(n2ℓ)

xD2ℓ

]
Since

λD
1 D(rD1 )

λD
2 D(rD2 )

< 1,
xD
1ℓ

xD
2ℓ

is bounded above by a number smaller than one. In addition, the term in brackets is

bounded. Therefore there exists a ᾱ such that if αℓ > ᾱ then κD′(n2ℓ) < κD′(n1ℓ), which implies n2ℓ > n1ℓ.

Similarly, consider a location in which QL
1ℓ ≥ QL

2ℓ and n2ℓ > 0. The FOCs imply

AD
ℓ x

D
2ℓκ

D′(n2ℓ) +AL
ℓ x

L
2ℓκ

L′(n2ℓ) = ψℓ + σ2 = ψℓ + σ1 ≥ AD
ℓ x

D
1ℓκ

D′(n1ℓ) +AL
ℓ x

L
1ℓκ
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This can be rearranged as

αℓx
D
2ℓκ

D′(n2ℓ) + xL2ℓκ
L′(n2ℓ) ≥ αℓx

D
1ℓκ

D′(n1ℓ) + xL1ℓκ
L′(n1ℓ)

or further as

αℓ

[
xD2ℓκ

D′(n2ℓ)− xD1ℓκ
D′(n1ℓ)

xL1ℓ

]
+
xL2ℓ
xL1ℓ

κL′(n2ℓ) ≥ κL′(n1ℓ)

Since
λL
2 L(rL2 )

λL
1 L(rL1 )

< 1,
xL
2ℓ

xL
1ℓ

is bounded above by a number smaller than 1. Further, the term in brackets is

bounded. Therefore there exists an α such that αℓ < α implies κL′(n2ℓ) > κL′(n1ℓ) and hence n2ℓ < n1ℓ.

Finally, in the case where κD(n) = κL(n) ≡ κ(n) for all n. If QD
1ℓ = QD

2ℓ = QL
1ℓ = QL

2ℓ, the FOCs imply

αℓλ
D
2 D(rD2 )κ′(n2ℓ) + λL2L(rL2 )κ′(n2ℓ) = αℓλ

D
1 D(rD1 )κ′(n1ℓ) + λL1L(rL1 )κ′(n1ℓ)

This can be rearranged as
αℓλ

D
2 D(rD2 ) + λL2L(rL2 )

αℓλ
D
1 D(rD1 ) + λL1L(rL1 )

=
κ′(n1ℓ)

κ′(n2ℓ)

The conclusion follows from the fact that the left-hand side (i) is strictly increasing in αℓ; (ii) is larger than

one as αℓ grows large; and (iii) is smaller than one as αℓ grows small.

A.5 Proof of Proposition 6

Proof. The first order conditions for QD and Q̄L are

λDj D
(
rDj
)
BD = CD

λLj L
(
rLj
)
BL = CL

We begin with the ratio of the two first order conditions and the balance sheet constraint

λLj L
(
rLj

)
BL

j

λDj D
(
rDj

)
BD

j

=
CL

CD

1 + ωj =
Q̄L

j L
(
rLj

)
BL

j

Q̄D
j D

(
rDj

)
BD

j

Since C is homothetic, CL
CD

depends only on
Q̄L

j

Q̄D
j
. Therefore these equations determine wholesale funding

intensity and
Q̄L

j

Q̄D
j
. Therefore if BL

j and BD
j change in proportion, there is no change in ωj or

Q̄L
j

Q̄D
j
. Given the

processing costs θDj and θLj , λ
D
j , λ

L
j , r

D
j , rLj only depend on ω, so these are also unchanged. To get at the
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change in appeal, we differentiate each of the first-order conditions:

Q̄D
j CDD

CD
d log Q̄D

j +
Q̄L

j CDL

CD
d log Q̄L

j = d logBD
j

Q̄D
j CLD

CL
d log Q̄D

j +
QLCLL

CL
d log Q̄L

j = d logBL
j

Summing the two equations and using d logBD
j = d logBL

j = d logBj along with the fact that
Q̄L

j

Q̄D
j

is

unchanged so that d log Q̄L
j = d log Q̄D

j gives the result:

d log Q̄D
j = d log Q̄L

j =
1

εC
d logBj

The rest of the results follow directly from these results and the definitions of zDj , zLj , Dj , and Lj .

A.6 Proof of Proposition 7

Proof. As in the proof of Proposition 6, we begin with the ratio of the two first order conditions and the

balance sheet constraint
λLj L

(
rLj

)
BL

j

λDj D
(
rDj

)
BD

j

=
CL

CD

1 + ωj =
Q̄L

j L
(
rLj

)
BL

j

Q̄D
j D

(
rDj

)
BD

j

Taking logs and differentiating each gives

−
(
ελj + εXj

)
d log (1 + ωj) + d log

BL
j

BD
j

= χjd log
Q̄L

j

Q̄D
j

(29)

d log (1 + ωj) = d log
Q̄L

Q̄D
− εXj d log (1 + ωj) + d log

BL
j

BD
j

(30)

Solving for d log Q̄L

Q̄D gives

d log
Q̄L

j

Q̄D
j

= −
ελj − 1

ελj + (1 + χj) εXj + χj
d log

BL
j

BD
j
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To get at the change in
zLj
zDj

=
λL
j L(rLj )Q̄L

λD
j D(rDj )Q̄D

, we differentiate

d log
zL
zD

= −
(
ελj + εXj

)
d log (1 + ωj) + d log

Q̄L
j

Q̄D
j

Using (29), this is

d log
zL
zD

=

(
χjd log

Q̄L
j

Q̄D
j

− d log
BL

j

BD
j

)
+ d log

Q̄L
j

Q̄D
j

= (1 + χj) d log
Q̄L

j

Q̄D
j

− d log
BL

j

BD
j

= (1 + χj)

(
−

ελj − 1

ελj + (1 + χj) εXj + χj
d log

BL
j

BD
j

)
− d log

BL
j

BD
j

= −

[
(1 + χj)

ελj − 1

ελj + (1 + χj) εXj + χj
+ 1

]
d log

BL
j

BD
j
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[
(2 + χj) ε

λ
j + (1 + χj) ε

X
j − 1

ελj + (1 + χj) εXj + χj

]
d log

BL
j

BD
j

To get at the change in the ratio of loans to deposits,
Lj

Dj
=

Q̄L
j B

L
j L(rLj )

Q̄D
j BD

j D(rDj )
= (1 + ωj), we have

d log
Lj

Dj
= d log (1 + ωj) =

1

1 + εXj

(
d log

Q̄L
j

Q̄D
j

+ d log
BL

j

BD
j

)

=
1

1 + εXj

(
−

ελj − 1

ελj + (1 + χj) εXj + χj
+ 1

)
d log
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j

BD
j

=
1 + χj

ελj + (1 + χj) εXj + χj
d log
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j

BD
j

=

(
1−

ελj + (1 + χj) ε
X
j − 1

ελj + (1 + χj) εXj + χj

)
d log

BL
j

BD
j

B Additional Model Details

B.1 Household Problem

Household i’s demand for deposits and for loans depend on the respective interest rates. We assume

household i’s demand for deposits takes the form diD̃
(
rD
)
, while its demand for loans takes the form
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liL̃
(
rL
)
. Each household has a particular taste for each bank. Household i’s taste for bank j has components

that are common to all households in location ℓ, Q̃D
jℓ and Q̃

L
jℓ, as well as idiosyncratic components, εDij , ε

L
ij .

Household i in location ℓ chooses bank j and bank branch o ∈ Oj for deposits and for loans that

maximizes its indirect utility

max
j,o∈Oj

GD
(
rDjo
)
− T̃D (δℓo) + Q̃D

jℓ + ηεDij

max
j,o∈Oj

GL
(
rLjo
)
− T̃L (δℓo) + Q̃L

jℓ + ηεLij

We assume that the vectors
{
εDij

}
j
and

{
εDij

}
j
are drawn from a standard Gumbel distribution, are inde-

pendent across j, but may be correlated across uses (e.g., we allow for the possibility that εDij = εLij for each

j). For households in ℓ, let oDjℓ and oLjℓ be the branches the household would use if it chose to use bank j

for deposits and for loans.

The probability of choosing bank j or deposits is

Pr (household i chooses bank j for deposits) =
e
η

[
GD

(
rD
joD

jℓ

)
+Q̃D

jℓ−T̃D

(
δ
ℓoD

jℓ

)]

PD
ℓ

Pr (household i chooses bank j for loans) =
e
η

[
GL

(
rL
joL

jℓ

)
+Q̃L

jℓ−T̃L

(
δ
ℓoL

jℓ

)]

PL
ℓ

where the terms in the denominators are

PD
ℓ ≡

∑
j

e
η

[
GD

(
rD
joD

jℓ

)
+Q̃D

jℓ−T̃D

(
δ
ℓoD

jℓ

)]

PL
ℓ ≡

∑
j

e
η

[
GD

(
rL
joL

jℓ

)
+Q̃L

jℓ−T̃L

(
δ
ℓoL

jℓ

)]

For bank j, local deposits and local demand will be

Djℓ =
e
η

[
GD

(
rD
joD

jℓ

)
+Q̃D

jℓ−T̃D

(
δ
ℓoD

jℓ

)]

PD
ℓ

∫
i∈Iℓ

diD̃
(
rD
j,oDjℓ

)
di

Ljℓ =
e
η

[
GL

(
rL
joL

jℓ

)
+Q̃L

jℓ−T̃L

(
δ
joL

jℓ

)]

PL
ℓ

∫
i∈Iℓ

liL̃
(
rL
j,oLjℓ

)
di

Define the following objects:
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AD
ℓ ≡ 1

PD
ℓ

∫
i∈Iℓ

didi

AL
ℓ ≡ 1

PL
ℓ

∫
i∈Iℓ

lidi

D(r) ≡ eηG
D(r)D̃(r)

L(r) ≡ eηG
L(r)L̃(r)

QD
jℓ ≡ eηQ̃

D
jℓ

QL
jℓ ≡ eηQ̃

L
jℓ

TD(δ) = e−ηT̃D(δ)

TL(δ) = e−ηT̃L(δ)

Then bank j’s local deposits and local loan demand will be

Djℓ = TD
(
δoDjℓ,ℓ

)
QD

jℓA
D
ℓ D

(
rD
j,oDjℓ

)
Ljℓ = TL

(
δoLjℓ,ℓ

)
QL

jℓA
L
ℓ L
(
rD
j,oLjℓ

)
B.2 Details on Limiting Case

B.2.1 A Two-Stage Problem

In this section, we describe the limiting case that is the focus of the paper. Before describing the limit,

it will be useful to reframe bank j’s problem. Let δℓ(Oj) ≡ mino∈Oj δℓo be the shortest distance between

location ℓ and any of bank j’s branches. Let xDjℓ ≡ AD
ℓ Jjℓϕjℓ and x

L
jℓ ≡ AL

ℓ Jjℓϕjℓ. Then firm j’s profit is

πj = sup

Oj , Dj , Lj , ωj ,

rDj , rLj , Q̄D
j , Q̄L

j

(
rLj − θLj

)
Lj −

(
rDj + θDj

)
Dj −R (ωj)ωjDj −

∑
o∈Oj

Ψo − w∗
jH (|Oj |)− w∗

jC
(
Q̄D

j , Q̄
L
j

)

subject to

Dj = Q̄D
j D

(
rDj
) ∫

TD (δℓ (Oj))x
D
jℓdℓ

Lj = Q̄L
j L
(
rLj
) ∫

TL (δℓ (Oj))x
L
jℓdℓ

Dj = (1 + ωj)Lj
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We can divide the bank’s problem into two stages, first selecting branch locations Oj and then making the

remainder of its choices. We can characterize the second step as

πj = sup
Oj

Fj

(
BD

j (Oj), B
L
j (Oj), B

fixed(Oj), B
span(Oj)

)
where

BD
j (Oj) ≡

∫
TD (δℓ (Oj))x

D
jℓdℓ

BL
j (Oj) ≡

∫
TL (δℓ (Oj))x

L
jℓdℓ

Bfixed (Oj) ≡
∑
o∈Oj

Ψo

Bspan (Oj) ≡ H (|Oj |)

and the function Fj is summarizes the optimization in the second step:

Fj

(
BD, BL, Bfixed, Bspan

)
= sup

Dj , Lj , ωj ,

rDj , rLj , Q̄D
j , Q̄L

j

(
rLj − θLj

)
Lj −

(
rDj + θDj

)
Dj −R (ωj)ωjDj

−Bfixed − w∗
jB

span − w∗
jC
(
Q̄D

j , Q̄
L
j

)
subject to

Dj = Q̄D
j D

(
rDj
)
BD

Lj = Q̄L
j L
(
rLj
)
BL

Dj = (1 + ωj)Lj

With this, we are in a position to study the limiting economy.

B.2.2 The Limiting Economy

Consider a sequence of models whose parameters are indexed by ∆ > 0. In particular, for economy ∆,

suppose that household distaste for travelling to a branch for deposits and for loans is given by

TD,∆(δ) = tD
(
δ

∆

)
TL,∆(δ) = tL

(
δ

∆

)
local fixed costs are given by

Ψ∆
ℓ = ψℓ∆

2
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and the headquarter cost is given by

H∆(|Oj |) = h
(
∆2|Oj |

)
.

Thus for an economy with a small ∆, households have a strong distaste for traveling to branches, and

fixed and span of control costs are small. These jointly imply that it is optimal for a bank to set up many

branches.

Our aim is to characterize the bank’s profit and choices in the limiting economy as ∆ → 0. Let π∆j be

firm j’s profit in economy ∆. Proposition B.1 shows the firms profit in the limiting economy

Proposition B.1 Let N be the set of positive functions n : S → [0,∞). In the limit, the bank’s profit

converges to

lim
∆→0

π∆j = sup
nj∈N

Fj

(
bDj (nj), b

L
j (nj), b

fixed(nj), b
span(nj)

)
where

bDj (nj) ≡
∫
κD(njℓ)x

D
jℓdℓ

bLj (nj) ≡
∫
κL(njℓ)x

L
jℓdℓ

bfixed(nj) ≡
∫
njℓψℓdℓ

bspan(nj) ≡ h

(∫
njℓdℓ

)
where κD(n) ≡ ngD

(
1
n

)
and κL(n) ≡ ngL

(
1
n

)
, and gD(u) and gL(u) are integrals of the functions tD(·) and

tL(·) respectively over all distances between the origin and points of a regular hexagon of area u centered at

the origin.

The proof follows largely along the lines of Oberfield et al. (2024).

B.3 A Convenient Functional Form

Suppose that the intensive margins of deposit and loan demand take the forms

D(r) =
(
r − r̄D

) 1

βD
−1

L(r) =
(
r̄L − r

) 1

βL
−1
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with βD, βL ∈ (0, 1] and r̄D and r̄L are some reference rates. Then the solution to the interest rate setting

problems rD = maxr(c− r)D(r) and rL = maxr(r − c)L(r) are

rD =βDr̄D +
(
1− βD

)
c (as long as c ≥ r̄D)

rL =βLr̄L +
(
1− βL

)
c (as long as r̄L ≥ c)

In the model, the shadow payoff of deposits is ρD(ωj)− θDj , while the shadow cost of loans is ρL(ωj) + θLj ,

so that the multipliers are would be

λDj = ρD(ωj)− rDj − θDj = βD
[
ρD(ωj)− θDj − r̄D

]
λLj = rLj − θLj − ρL(ωj) = βL

[
r̄L − θLj − ρL(ωj)

]
Finally, maximized objective of each interest rate setting problem takes the form

max
r

[ρD(ωj)− r − θDj ]D(r) =βD(1− βD)
1

βD
−1

[ρD(ωj)− θDj − r̄D]
1

βD

max
r

[r − θLj − ρL(ωj)]L(r) =βL(1− βL)
1

βL
−1

[r̄L − θLj − ρL(ωj)]
1

βL

C Additional Empirical Results and Details

C.1 Data Cleaning

This section outlines the cleaning procedure for the data. We begin by appending the Summary of Deposits

data from 1981-1993 provided by Christa Bouwman to the publicly available data from 1994-2006 provided

by the FDIC. The initial data set has 1,894,507 branch-year observations. We then construct our initial

sample by performing the following operations:

1. Drop banks with bank identifier = 0 [23 observations]

2. Drop branches with no deposits [95,973 observations]

3. Drop branches outside of the US [11,751 observations]

4. Drop non-continental US states (AK, HI) and DC [13,143 observations]

5. Drop banks supervised by the OTS since the 1981-1993 data do not include these banks [131,297

observations]

After the initial cleaning, there are 1,642,320 observations remaining. We then perform several operations

to match banks to their holding companies. The data present two challenges. First, data on holding company

locations begin in 1986, five years after the sample starts. We therefore need to infer holding company

locations for 1981-1985 from the initial data in 1986. Second, several small banks appear to be acquired
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by a new holding company that only owns a single bank. We need to identify whether these were actual

acquisitions or whether a given small bank simply created a holding company for legal purposes and owned

only the bank in question. We clean the data according to the following process.

Step 1: Clean Addresses We first need to make sure that branch, bank, and BHC addresses are

consistent through time. We clean the addresses according to the following steps. We demonstrate the

process using an example address, ”#232 w elm street, campus”.

1. Replace raw address with proper capitalization [→ #232 W Elm Street, Campus]

2. Remove ”#” and ”.” characters [→ 232 W Elm Street, Campus]

3. Replace directional characters with their full name [→ 232 West Elm Street, Campus]

4. Shorten streets, avenues, boulevards, roads, and drives to their abbreviations [→ 232 West Elm St,

Campus]

5. Remove text after trailing commas [→ 232 West Elm St]

At this point, we treat addresses as unique within the county.

Step 2: Identify Bank-BHC Pairs We next merge the cleaned BHC addresses to each BHC identifier

in the data. To identify banks that became BHCs, we perform the following procedure.

1. Collapse the data down to the bank-BHC-year level

2. Carry BHC variables (name, address, county, state) backwards to 1981-1985

3. Identify changes from no BHC ownership (BHC identifer = 0) to BHC ownership (BHC identifier ̸=
0)

4. Use bigram matching between bank headquarter address and BHC headquarter address to identify

new vs. existing BHCs. We consider addresses to be the same if their similarity score is above 0.6.

We manually inspect the results of this procedure and find that 0.6 correctly captures the majority of

legal (non-new) bank-BHC pairs.

5. Replace the BHC identifier with the eventual BHC if (i) the addresses match according to step 4 and

(ii) BHC = 0 initially.

6. Repeat Step 2 for BHCs identified in Step 5.

7. If BHC identifier was not replaced, we interpret the change in identifier as an acquisition. Prior to

this event, we replace the BHC identifier with the bank identifier and replace BHC name, address,

county, and state with that of the bank.

We then merge the cleaned BHC identifiers into the main data set.
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Step 3: Clean Missing BHC State Codes Despite the cleaning process in Step 2, there are still

several small companies in the BHC data that never report geographic variables. This is an important

omission since we would like to identify out-of-state banks and distance from headquarters. We infer the

headquarters state from a BHC by collapsing the data down to the BHC-year-state level. For all BHCs

that are at some point only active in a single state, we replace the missing headquarters state with the state

in which the BHC is active. We drop the remaining BHCs that are not matched to a headquarters state,

resulting in 20,439 dropped observations. The final data set has 1,629,881 branch-year observations.

C.2 Local Appeal for Banks and Distance

We have allowed local appeal to depend on distance from headquarters. To estimate the extent to which

distance reduces appeal, we assess the extent to which, conditional on the number of branches, a bank’s

deposits (or equivalently deposits per branch) falls with distance, conditional on location and bank fixed

effects.

Bank j’s deposits per branch in location ℓ can be written as

Djℓ

njℓ
= Q̄D

j J
D
jℓϕjℓA

D
ℓ D

(
rDj
) κD (njℓ)

njℓ
. (31)

Converting the location index ℓ to counties, c, this result suggests the following regression specification:

log
Djct

njct
= β ×Distance from Headquartersjc + P(Branchesjct) + δjt + δct + ϵjct (32)

where P(Branchesjct) is a degree 5 polynomial in the number of branches placed by bank j in county c at

time t. The estimate β̂ will tell us how Qjℓ varies with distance. As shown in Table C.3, we find β < 0

across all specifications, suggesting that appeal declines with distance.

C.3 Density of Initial Location and Bank Expansion

We consider the following regressions,

log(E[Yj,Tj − Yj,0j ]) = β log(Density
cHQ
j ,0j

) + δSizej,0j + α log(Yj,0j ) + γTj × γ0j + γ
sHQ
j

+ εj , (33)

log(E[Yj,Tj − Yj,0j ]) = β log(Density
cHQ
j ,0j

) + δSizej,0j + α log(Yj,0j ) + γTj × γ0j × γ
sHQ
j

+ εj , (34)

log(Yj,Tj )− log(Yj,0j ) = β log(Density
cHQ
j ,0j

) + δSizej,0j + α log(Yj,0j ) + γTj × γ0j + γ
sHQ
j

+ εj . (35)

In these regressions, Density
cHQ
j ,0j

is the population density of bank j’s headquarter county in the first year

they are included in the sample, 0j ; Sizej,0j is the log of bank j’s total deposits in their initial sample year;

γTj and γ0j are fixed effects for the final and initial sample year of bank j; and γ
sHQ
j

is a fixed effect for
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bank j’s headquarter state. We let Yj,· denote either the number of branches of bank j or the number of

active counties. Both headquarter density and bank size are standardized.

We include the final-initial year fixed effects to account for the fact that some banks exited or entered the

sample at different times. Comparing a bank that operated throughout the entire sample period to one that

entered halfway through would therefore bias the results. We also include the state headquarters fixed effect

to account for differences in regulation at the state level. A bank in New York, which deregulated in the

early 1980s, would have had more expansion opportunities than a bank in Kentucky, which deregulated in

the middle of the 1990s. Therefore, differences in headquarter county density may in turn be correlated with

the deregulation. The fixed effect absorbs these differences. Finally, we include initial bank size controls to

account for differences in initial banking technology and appeal.

The results are presented in Table C.4. Columns (1) and (4) present the results for the Poisson regressions

(33), columns (2) and (5) present the results for the Poisson regressions (34), and columns (3) and (6) present

the results for the regression in log changes (35).

Across all specifications, we find that being headquartered in a denser county is positively and signifi-

cantly associated with (i) adding more branches and accessing more counties, and (ii) having a higher growth

rate for the number of branches and counties. The results support the notion that banks face increasing

returns to scale, which at least in part explains the substantial growth of the largest banks headquartered

in big cities such as Bank of America or Chase.

C.4 Persistence of Local Deposit Abundance Measure

This section reports the persistence our deposit abundance measure, DepAbunct. For three different mea-

sures of local lending — mortgage loans, CRA small business loans, and the sum of the two — we estimate

the R2 of the regressions

logDepAbunct = αk + βk logDepAbunct−k + εct. (36)

We consider two different time periods: 1990-2006 (when our mortgage data sample begins) and 1996-2006

(when our CRA small business loan sample begins). For 1990-1995, we plot the backfilled value of CRA

small business loans that we use in the main text. We consider 5 years of lags in our plots. Figure C.3

reports the results graphically.

We find that DepIntct displays significant persistence over time, even at long time horizons. Further,

note that even when only using mortgage loans, the persistence is stable across time periods, implying that

the differences across time are not particularly important. This justifies our use of backfilling as a means of

approximating deposit abundance for years in which we have missing data.
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C.5 Additional Figures and Tables
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Figure C.1: This graph reports a binscatter plot of the relationship between log total deposits and log
deposits per branch. Red diamonds report the raw relationship, blue squares add year fixed effects, yellow
triangles add headquarter state by year fixed effects, and dark blue X’s add bank fixed effects.
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Figure C.2: This figure reports the yearly regression coefficients for equation (16) using banks’ log total
deposits in the first year they appear in the sample as the main independent variable. Panel (a) uses
state-by-year fixed effects, panel (b) uses state-by-headquarter state-by-year fixed effects, and panel (c) uses
state-by-headquarter commuting zone-by-year fixed effects. Standard errors are clustered at the bank level.
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Figure C.3: This figure plots the R2 from the regression (36). In the measure of deposit abundance, panel
(a) only uses mortgage loans, panel (b) only uses CRA small business loans, and panel (c) uses both loans
combined. Red diamonds report the results for the sample of counties between 1996-2006 and blue squares
report results for the sample of counties between 1990-2006.
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(b) Relative Effect of Deposit Abundance

Figure C.4: This figure plots the regression estimates for equations (24) [Panel (a)] and (25) [Panel (b)].
We vary the number of lags of the expansion indicator in each equation from 0 to 5. Estimates are reported
for time horizons h = −5, . . . , 5, with h = −1 normalized to 0. Panel (a) reports the relative effect between
high and low wholesale funding banks. Panel (b) reports the relative effect between high and low deposit
abundant expansion. Standard errors are adjusted for heteroscedasticity. 90% confidence intervals are
reported as solid lines, while the 95% confidence intervals are reported as dotted lines.
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(b) Relative Effect of Deposit Abundance

Figure C.5: This figure plots the regression estimates for equations (24) [Panel (a)] and (25) [Panel (b)].
This specification selects on banks that expand at most once throughout our sample. Estimates are reported
for time horizons h = −5, . . . , 5, with h = −1 normalized to 0. Panel (a) reports the relative effect between
high and low wholesale funding banks. Panel (b) reports the relative effect between high and low deposit
abundant expansion. Standard errors are adjusted for heteroscedasticity. 90% confidence intervals are
reported as solid lines, while the 95% confidence intervals are reported as dotted lines.

65



-.1

-.05

0

.05

C
um

ul
at

iv
e 

Lo
g 

C
ha

ng
e 

in
 W

FE

-5 -4 -3 -2 -1 0 1 2 3 4 5
Time Relative to Expansion

(a) Relative Effect of High WFE

-.1

-.05

0

.05

C
um

ul
at

iv
e 

Lo
g 

C
ha

ng
e 

in
 W

FE

-5 -4 -3 -2 -1 0 1 2 3 4 5
Time Relative to Expansion

(b) Relative Effect of Deposit Abundance

Figure C.6: This figure plots the regression estimates for equations (24) [Panel (a)] and (25) [Panel (b)].
This specification selects on banks that ever expand at some point throughout our sample. Estimates are
reported for time horizons h = −5, . . . , 5, with h = −1 normalized to 0. Panel (a) reports the relative effect
between high and low wholesale funding banks. Panel (b) reports the relative effect between high and low
deposit abundant expansion. Standard errors are adjusted for heteroscedasticity. 90% confidence intervals
are reported as solid lines, while the 95% confidence intervals are reported as dotted lines.
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Dependent Variable: logDensityjst

(1) (2) (3) (4) (5)

Dep/Branchj0 0.228*** 0.300*** 0.261*** 0.259*** 0.242***

(0.017) (0.050) (0.059) (0.079) (0.073)

Out-of-State Only ✓ ✓ ✓ ✓

Drop No HQ Overlap ✓

State × Year FE ✓ ✓

HQ State × State × Year FE ✓

HQ CZ × State × Year FE ✓ ✓

Obs. 220839 11821 8366 5299 4803

Adjusted R2 0.41 0.48 0.56 0.67 0.65

Within R2 0.02 0.04 0.04 0.05 0.04

Table C.1: This table reports regression estimates for the equation logDensityjst = β logDep/Branchj0 +
fixed effects + εjst. The dependent variable is the branch-weighted average log density of a BHC j in state
s at time t. Dep/Branchj0 is the log deposits per branach of BHC j in their initial sample year. Column
(1) includes the full sample of BHCs. Column (2) conditions on out-of-state banks. Column (3) further
limits the variation to out-of-state BHCs headquartered in the same state. Column (4) limits the variation
to out-of-state BHCs headquartered in the same commuting zone. Column (5) drops banks whose BHC
headquarter commuting zone does not overlap with their largest member bank’s headquarter commuting
zone. Standard errors are reported in parentheses and clustered at the BHC level. * p < 0.1, ** p < 0.05,
*** p < 0.01.
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Dependent Variable: logDepAbunct

Specification: Mortgages + CRA Loans Mortgages Loans Only

(1) (2) (3) (4) (5) (6)

logDensityct −0.356*** −0.374*** −0.359*** −0.456*** −0.475*** −0.481***

(0.012) (0.014) (0.024) (0.014) (0.016) (0.028)

log Incomect −1.028*** −1.283***

(0.102) (0.117)

ShareAbove65ct 8.392*** 11.473***

(0.430) (0.513)

ShareWhitect −0.903*** −1.066***

(0.121) (0.134)

ShareSelfEmployedct −0.620*** −1.960***

(0.163) (0.185)

log Branchesct 0.101*** 0.086**

(0.036) (0.043)

log Banksct 0.091** 0.145***

(0.041) (0.048)

State-Year FE ✓ ✓ ✓ ✓

Obs. 51073 51073 50204 51075 51075 50204

Within R2 0.20 0.25 0.40 0.15 0.22 0.38

Table C.2: This table reports the regression results of equation (18). The dependent variable is the log
of county c’s deposit abundance in year t. Columns (1)-(3) use mortgages and CRA loans, while columns
(4)-(6) only use mortgage loans. Controls are log population density, log of per capita income, the share of
households above the age of 65, the share of white households, the share of self-employed workers, the log
of the total number of branches, and the log of the total number of banks for each county. Standard errors
are reported in parentheses and are clustered at the county level. * p < 0.1 ** p < 0.05 *** p < 0.01.
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Dependent Variable: logDep/Branchjct logDepositsjct

(1) (2) (3) (4) (5) (6)

logDistancejc −0.118*** −0.121*** −0.111*** −0.229*** −0.234*** −0.226***

(0.011) (0.011) (0.015) (0.016) (0.017) (0.022)

Branchesjct 11.520*** 11.068*** 8.862*** 60.839*** 59.573*** 51.900***

(0.845) (0.856) (1.008) (2.702) (2.695) (2.621)

Branches2jct −33.663*** −32.212*** −24.832***−182.775***−177.899***−146.998***

(3.580) (3.557) (3.618) (14.494) (14.402) (12.921)

Branches3jct 37.331*** 35.640*** 26.732*** 204.763*** 199.136*** 160.204***

(5.068) (5.017) (4.712) (22.264) (22.139) (19.107)

Branches4jct −16.314*** −15.552*** −11.482*** −90.335*** −87.819*** −69.620***

(2.596) (2.560) (2.307) (11.746) (11.641) (9.838)

Branches5jct 2.401*** 2.286*** 1.671*** 13.422*** 13.042*** 10.247***

(0.424) (0.417) (0.367) (1.942) (1.918) (1.602)

Bank × Year FE ✓ ✓ ✓ ✓ ✓ ✓

County × Year FE ✓ ✓ ✓ ✓ ✓ ✓

Top 10% of Banks ✓ ✓

Top 1% of Banks ✓ ✓

Observations 161867 126667 65766 161867 126667 65766

R2 0.63 0.58 0.57 0.73 0.70 0.75

R2 0.04 0.04 0.04 0.04 0.04 0.04

Table C.3: This table displays regression results of equation (32). The dependent variables are the log of
bank j’s deposits in county c divided by their branch density [Columns (1)-(3)] and the log of bank j’s
total deposits in county c [Columns (4)-(6)]. Distancejc is the total miles between the centroid of bank j’s
headquarter county and county c. Specifications (2) and (5) restrict the sample to the top 10% of banks by
total deposits and specifications (3) and (6) restrict the sample to the top 1% of banks by total deposits.
Controls are a fifth degree polynomial in branch density njℓ. Standard errors are reported in parentheses
and are clustered at the bank-county level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Dependent Variable: Branches Counties

Poisson Logs Poisson Logs

(1) (2) (3) (4) (5) (6)

logDensity
cHQ
j ,0j

0.221** 0.242** 0.045*** 0.120** 0.127* 0.007*

(0.086) (0.117) (0.006) (0.056) (0.076) (0.004)

logDepositsj,0j 0.464*** 0.416*** 0.116*** 0.546*** 0.525*** 0.084***

(0.097) (0.121) (0.010) (0.055) (0.081) (0.006)

log Branchesj,0j 0.406*** 0.531*** −0.314***

(0.082) (0.106) (0.023)

log Countiesj,0j 0.350*** 0.506*** −0.292***

(0.073) (0.100) (0.034)

First Year × Last Year FE ✓ ✓ ✓ ✓

HQ State FE ✓ ✓ ✓ ✓

First Year × Last Year × HQ State FE ✓ ✓ ✓ ✓

Observations 16053 12642 14649 16091 9826 14649

Pseudo-R2 0.74 0.80 0.59 0.63

Within-R2 0.06 0.04

Table C.4: This table displays the results of the Poisson regression equation (33) [Columns (1)-(2), (4)-(5)]
and regression equation (35) [Columns (3) and (6)]. The dependent variables are either the total/log change
in number of branches or number of counties for bank j between the first and last year bank j is in the
sample. logDensity

cHQ
j ,0j

is the log population density of bank j’s headquarters county in the initial sample

year. logDepositsj,0j is the log of total deposits of bank j in the initial sample year. log Branchesj,0j and
log Countiesj,0j are the initial number of bank j’s branches and counties, respectively. Columns (1) and (4)
consider separate time and headquarter state fixed effects, while the remaining columns interact the fixed
effects. Standard errors are reported in parentheses and are clustered at the headquarter county level. *
p < 0.1, ** p < 0.05, *** p < 0.01.
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Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDep/Branchjs × logDensitych 0.295** 0.451*** 0.300***

(0.121) (0.076) (0.090)

logWFEjs × logDepAbunch 0.229** 0.102* 0.228***

(0.098) (0.062) (0.080)

logDep/Branchjs × logDepAbunch −0.446***

(0.156)

logWFEjs × logDensitych 0.048

(0.042)

logDistancejc −0.774** −1.204*** −1.319*** −1.330***

(0.366) (0.299) (0.266) (0.270)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Dep/Branch Decile × Density Decile FE ✓

Obs. 6090 5547 11302 11302

Pseudo-R2 0.67 0.66 0.69 0.70

Table C.5: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification includes banks with wholesale funding exposure
greater than 1. Independent bank and county variables are measured in the year prior to a bank-state pair
opening event. We consider observations 0-5 years after the opening event occurs. Standard errors are
reported in parentheses and are clustered at the bank-county level. * p < 0.1 ** p < 0.05 *** p < 0.01.
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Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDep/Branchjs × logDensitych 0.700*** 0.544*** 0.342**

(0.259) (0.155) (0.165)

logWFEjs × logDepAbunch 0.422*** 0.256*** 0.359***

(0.156) (0.092) (0.117)

logDep/Branchjs × logDepAbunch −0.303

(0.280)

logWFEjs × logDensitych 0.110

(0.075)

logDistancejc −0.872** −1.583*** −1.587*** −1.603***

(0.374) (0.345) (0.345) (0.347)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Dep/Branch Decile × Density Decile FE ✓

Obs. 3889 3552 7742 7742

Pseudo-R2 0.63 0.62 0.68 0.68

Table C.6: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification only includes banks’ branches that did not exist in
a state prior to the bilateral opening event. Independent bank and county variables are measured in the
year prior to a bank-state pair opening event. We consider observations 0-5 years after the opening event
occurs. Standard errors are reported in parentheses and are clustered at the bank-county level. * p < 0.1
** p < 0.05 *** p < 0.01.
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Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDep/Branchjs × logDensitych 0.472*** 0.551*** 0.331***

(0.125) (0.071) (0.099)

logWFEjs × logDepAbunch 0.214** 0.150*** 0.312***

(0.098) (0.056) (0.080)

logDep/Branchjs × logDepAbunch −0.537***

(0.166)

logWFEjs × logDensitych 0.072*

(0.041)

logDistancejc −0.937*** −1.089*** −1.177*** −1.188***

(0.282) (0.296) (0.217) (0.222)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Dep/Branch Decile × Density Decile FE ✓

Obs. 3671 3530 7377 7377

Pseudo-R2 0.68 0.67 0.70 0.70

Table C.7: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification only includes observations between 1990 and 2006.
Independent bank and county variables are measured in the year prior to a bank-state pair opening event. We
consider observations 0-5 years after the opening event occurs. Standard errors are reported in parentheses
and are clustered at the bank-county level. * p < 0.1 ** p < 0.05 *** p < 0.01.
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Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDep/Branchjs × logDensitych 0.461*** 0.549*** 0.322***

(0.131) (0.080) (0.102)

logWFEjs × logDepAbunch 0.056 0.075** 0.150***

(0.060) (0.031) (0.043)

logDep/Branchjs × logDepAbunch −0.213**

(0.084)

logWFEjs × logDensitych 0.091**

(0.044)

logDistancejc −0.713** −1.246*** −1.342*** −1.359***

(0.316) (0.307) (0.263) (0.265)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Dep/Branch Decile × Density Decile FE ✓

Obs. 5633 5172 10647 10647

Pseudo-R2 0.69 0.65 0.70 0.70

Table C.8: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification only uses mortgage loans in the measure of deposit
abundance. Independent bank and county variables are measured in the year prior to a bank-state pair
opening event. We consider observations 0-5 years after the opening event occurs. Standard errors are
reported in parentheses and are clustered at the bank-county level. * p < 0.1 ** p < 0.05 *** p < 0.01.
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Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDepositsjs × logDensitych 0.016 0.142*** 0.038

(0.071) (0.032) (0.038)

logWFEjs × logDepAbunch 0.155* 0.122* 0.291***

(0.083) (0.063) (0.074)

logDepositsjs × logDepAbunch −0.224***

(0.059)

logWFEjs × logDensitych 0.136***

(0.040)

logDistancejc −0.763** −1.222*** −1.261*** −1.308***

(0.388) (0.303) (0.261) (0.257)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Size Decile × Density Decile FE ✓

Obs. 5629 5981 10647 10647

Pseudo-R2 0.65 0.67 0.69 0.70

Table C.9: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification uses the log of total deposits as the measure of
bank productivity. Independent bank and county variables are measured in the year prior to a bank-state
pair opening event. We consider observations 0-5 years after the opening event occurs. Standard errors are
reported in parentheses and are clustered at the bank-county level. * p < 0.1 ** p < 0.05 *** p < 0.01.
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Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDep/Branchjs × logDensitych 0.414*** 0.532*** 0.425***

(0.136) (0.078) (0.122)

logWFEjs × logDepAbunch 0.252** 0.144** 0.289***

(0.105) (0.061) (0.078)

logDep/Branchjs × logDepAbunch −0.088

(0.191)

logWFEjs × logDensitych 0.064

(0.040)

logDepositsjs × logDensitych −0.043

(0.040)

logDepositsjs × logDepAbunch −0.202***

(0.066)

logDistancejc −0.781** −1.195*** −1.318*** −1.336***

(0.359) (0.299) (0.265) (0.264)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Size × Dep/Branch × Density Decile FE ✓

Obs. 5629 5008 10647 10647

Pseudo-R2 0.65 0.65 0.70 0.70

Table C.10: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification includes additional controls for bank size (measured
as total deposits) in addition to using deposits per branch as a measure of bank productivity. Independent
bank and county variables are measured in the year prior to a bank-state pair opening event. We consider
observations 0-5 years after the opening event occurs. Standard errors are reported in parentheses and are
clustered at the bank-county level. * p < 0.1 ** p < 0.05 *** p < 0.01.
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Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDep/Branchjs × logDensitych 0.255** 0.341*** 0.191**

(0.109) (0.066) (0.083)

logWFEjs × logDepAbunch 0.190** 0.118* 0.212***

(0.081) (0.062) (0.077)

logDep/Branchjs × logDepAbunch −0.232*

(0.129)

logWFEjs × logDensitych 0.100**

(0.042)

logDistancejc −0.770** −1.211*** −1.317*** −1.335***

(0.372) (0.300) (0.261) (0.261)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Dep/Branch Decile × Density Decile FE ✓

Obs. 5629 5490 10647 10647

Pseudo-R2 0.65 0.68 0.69 0.69

Table C.11: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification uses banks’ deposits per branch in the initial year
they appear in the sample rather than the year prior to a bilateral opening event. Independent bank and
county variables are measured in the year prior to a bank-state pair opening event. We consider observations
0-5 years after the opening event occurs. Standard errors are reported in parentheses and are clustered at
the bank-county level. * p < 0.1 ** p < 0.05 *** p < 0.01.
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Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDep/Branchjt × logDensityct 0.473*** 0.599*** 0.377***

(0.106) (0.089) (0.104)

logWFEjt × logDepAbunct 0.084 0.122*** 0.262***

(0.073) (0.046) (0.068)

logDep/Branchjt × logDepAbunct −0.472***

(0.165)

logWFEjt × logDensityct 0.081**

(0.038)

logDistancejc −0.807*** −1.748*** −1.294*** −1.328***

(0.278) (0.342) (0.259) (0.263)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Dep/Branch Decile × Density Decile FE ✓

Obs. 5773 5365 11033 11033

Pseudo-R2 0.67 0.67 0.69 0.69

Table C.12: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification uses time t measures of bank and county variables
rather than measuring them the year before a bilateral opening event. Independent bank and county
variables are measured in the year prior to a bank-state pair opening event. We consider observations 0-5
years after the opening event occurs. Standard errors are reported in parentheses and are clustered at the
bank-county level. * p < 0.1 ** p < 0.05 *** p < 0.01.

78



Dependent Variable: Branchesjct

(1) (2) (3) (4)

logDep/Branchjs × logDensitych 0.416*** 0.493*** 0.329***

(0.081) (0.057) (0.063)

logWFEjs × logDepAbunch 0.028 −0.008 0.071

(0.061) (0.044) (0.045)

logDep/Branchjs × logDepAbunch −0.176*

(0.092)

logWFEjs × logDensitych 0.143***

(0.025)

logDistancejc −0.807*** −1.371*** −1.103*** −1.111***

(0.238) (0.257) (0.194) (0.194)

Out-of-State Only ✓ ✓ ✓ ✓

Bank × State × Year FE ✓ ✓ ✓ ✓

County × HQ State × Year FE ✓ ✓ ✓ ✓

HQ CZ × State × Year FE ✓ ✓ ✓ ✓

. . .× WFE Decile × DepAbun Decile FE ✓

. . .× Dep/Branch Decile × Density Decile FE ✓

Obs. 9550 9606 16689 16689

Pseudo-R2 0.69 0.68 0.71 0.71

Table C.13: This table reports the results of Poisson regression equations (20) [Column (1)], (21) [Column
(2)], and (22) [Columns (3) and (4)]. This specification only includes observations 6-10 years after a bilateral
opening event. Independent bank and county variables are measured in the year prior to a bank-state pair
opening event. We consider observations 0-5 years after the opening event occurs. Standard errors are
reported in parentheses and are clustered at the bank-county level. * p < 0.1 ** p < 0.05 *** p < 0.01.
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