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Abstract

Using detailed policy-level data and natural disasters as our setting, we document that

insurers pass on climate risk costs to policyholders through both premiums and claim

rejection rates. Consistent with our theoretical model, premiums increase significantly

in both disaster-affected and unaffected areas following disaster events, while rejection

rates rise only in unaffected areas. Spillover effects are heterogeneous and depend on

consumers’ price sensitivity: in line with price shrouding, less price-sensitive consumers

in unaffected areas face higher premiums, while more price-sensitive consumers bear the

costs through increased rejection rates. These effects are further shaped by insurers’

financial constraints. During constrained periods, insurers raise premiums in both

affected and unaffected areas, whereas during unconstrained periods, they primarily

increase rejection rates in unaffected areas. Our findings demonstrate that climate risk

has contributed to rising premiums over the past two decades and reveal how insurers’

responses redistribute costs and access, impacting homeowners in both high-risk and

low-risk areas.
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1. Introduction

Climate risks and weather-related events—such as hurricanes, wildfires, and floods—have

increased markedly in frequency and severity over the past two decades.1 These trends

pose significant challenges for insurers, raising serious concerns about their ability to absorb

losses, particularly when these events are concentrated in time and geography. To manage

the escalating costs of climate risks, insurers may transfer them, either partially or fully, to

policyholders. How insurers allocate these costs not only determines their financial resilience

but also dictates who ultimately bears the burden of climate change. For instance, insurers

may deviate from strict risk-based pricing when passing on costs, leading to distributive

effects with implications for equity and access in insurance markets.

In this paper, we examine how insurers pass through costs associated with climate risk

to insurance contracts following natural disasters. Ex-ante, theoretical predictions remain

ambiguous. Under frictionless risk-based pricing, disasters should have no effect on con-

tracts, as climate risks would already be fully incorporated into premiums. However, under

imperfect information, risk-based pricing suggests that insurers update premiums based on

revised risk assessments, leading to higher premiums in affected areas where disasters am-

plify perceived risks. Alternatively, if disasters prompt a broader reassessment of climate risk

across regions, premium increases may extend to nearby unaffected areas. Natural disasters

may also mitigate adverse selection by enabling insurers to better differentiate between high-

and low-risk policies or regions, potentially leading to increased premiums in affected areas

while reducing premiums in unaffected areas.

Because insurers can transfer costs through both a more salient premium component

and less salient rejection rates, they may engage in price shrouding to obscure the full

cost of coverage (Gabaix and Laibson, 2006). The extent of this shrouding may depend on

consumers’ price sensitivity. For price-sensitive policyholders, insurers may rely more heavily

1For example, National Oceanic and Atmospheric Administration (NOAA) (2025); Federal Emergency
Management Agency (n.d.); United Nations Office for Disaster Risk Reduction (n.d.).
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on rejection rates to manage risk exposure, whereas for less sensitive policyholders, costs are

more likely to be passed on through higher premiums. Finally, insurers may respond by

offloading riskier policies in affected areas while lowering prices in unaffected areas to attract

new policies and rebalance their portfolios. We evaluate and distinguish these different

hypotheses in our analysis.

Evaluating the impact of natural disasters on insurance contracts is challenging because it

requires detailed policy-level data to track how contracts evolve over time. Aggregated data

can obscure critical heterogeneity and make it difficult to disentangle competing theoretical

predictions. We address this challenge by leveraging a unique dataset from Citizens Property

Insurance Corporation (Citizens), a non-profit organization that serves as Florida’s insurer

of last resort. This dataset provides granular policy-level information, including premiums,

coverage types, and various deductibles for each issued policy. Additionally, it contains

claims-level details such as filing dates, claim approval status, and disbursement amounts,

all of which are crucial for our analysis.

Our data covers over 4 million properties underwritten between 2002 and 2023. These

policies represent a significant portion of homeowners’ insurance in Florida, with Citizens

accounting for approximately 23% of the state’s residential property insurance market at its

peak. The average premium across these policies is $1,847.97, with considerable variation.

The premiums are primarily driven by coverage amounts. Coverage alone explains 55% of the

variation in premiums, while property-level characteristics combined with coverage account

for 89% of the total variation. The time-series explains only 2% of the variation.

To guide our empirical analysis, we first build and analyze a simple model of an insurer

of last resort (Citizens). We assume Citizens faces two sources of costs: deviations from an

explicit price target in each location, as well as negative deviations in their capital. Citizens

can manage their capital through prices and through claims rejections. When facing negative

returns on capital, e.g. when losses are high due to a hurricane, Citizens optimally raises

prices in both affected and unaffected locations to try and recoup their capital losses (Oh
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et al., 2022). The strength of the pricing spillovers depend on market demand: when the

private market is distressed, Citizens faces less elastic demand curves, which allows them

to offset their capital losses through prices. However, when the private market is stable,

Citizens’ pricing power falls. They therefore compensate by rejecting a larger share of claims.

We further show that the pass-through instrument depends on demand conditions in the

cross-section of locations. Conditional on capital losses, Citizens primarily passes through

costs using prices for low price-elasticity (e.g., high-income) locations, but passes through

costs primarily using claims rejections for high price-elasticity (e.g., low-income) locations.

This result speaks to the timing of risk sharing: high-income locations share risk ex-ante

through prices, while low-income locations share risk ex-post through the probability of

successfully filing a claim.

With the theoretical predictions in hand, we then turn to our empirical setting. We

employ a stacked difference-in-differences (DiD) approach, using hurricanes as the treatment

events. We restrict the sample to counties that experienced losses exceeding two million

USD (the median) from hurricanes at some point during the sample period. Our estimation

exploits variation in hurricane timing by comparing counties exposed to hurricanes earlier

versus later. This approach ensures that we compare counties with similar risk profiles

and exposure histories. The stacked DiD framework addresses issues associated with stag-

gered treatment timing (Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021; Sun and

Abraham, 2021), providing consistent and unbiased estimates of the effects of disasters on

insurance contracts.

We begin by validating our empirical setting by examining how claims evolve around

hurricane events. Both the affected and unaffected groups exhibit similar trends before and

after hurricanes, supporting the parallel trends assumption. However, in the hurricane year,

the affected group experiences a sharp spike in claims, with approved claims rising by 90%

relative to the unaffected group. The unaffected group remains stable throughout the seven-

year estimation period, which spans three years before and three years after the hurricane
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year.

Premiums and the premium-to-coverage ratio evolve similarly for both affected and un-

affected groups in the years leading up to hurricanes, consistent with the parallel trends

assumption. However, during the hurricane year, the affected group experiences a discrete

jump in these variables, which persists for an additional two years. In contrast, the unaf-

fected group exhibits a slightly delayed reaction, with a discrete jump occurring only in the

year after the hurricane. This increase is about half the magnitude of the affected group’s

and lasts for two years, indicating that premiums for the unaffected group rise for two years

post-hurricane. Meanwhile, the increase in mandatory charges-to-coverage occurs simulta-

neously in the year following the hurricane and is similar in magnitude across both affected

and unaffected groups.2 Interestingly, we find that insurers also pass through costs ex-post

via rejection rates, which inherently allows for price shrouding. While there is no change

in rejection rates for the affected group, the unaffected group shows an increase in rejection

rates in the year immediately following the disaster.

Our model predicts that spillover effects depend on consumer price elasticities. We test

this hypothesis using neighborhood (zip code) income as a proxy for price elasticities. We

find that premiums increase in unaffected areas only in high-income neighborhoods, where

households are likely to be less price-sensitive. In contrast, rejection rates remain unchanged

in these areas. Meanwhile, in low-income neighborhoods, policies experience an increase in

rejection rates but no change in premiums, indicating that price shrouding is concentrated

among more price-sensitive consumers. These findings suggest that insurers strategically

redistribute costs, with households in both low- and high-income low-risk areas subsidizing

those in high-risk areas—through higher rejection rates and premiums, respectively.

Pass-through in our model depends on both price targets and insurers’ capital (i.e., their

surplus-to-assets ratio). When surplus is decreasing, it is likely decreasing for competitors

2Citizens has the ability to levy mandatory charges on all active policies as a means of risk sharing. We
discuss mandatory charges in depth in Section section 3.
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in the region as well, leading most insurers in the market to raise prices.3 This allows

Citizens to follow suit without losing competitiveness. However, when surplus is increasing,

competitors are less likely to raise prices, limiting Citizens’ ability to increase premiums. In

such cases, insurers may instead pass on costs through higher rejection rates, as price targets

remain anchored by competitors’ pricing. Splitting hurricane events into periods of declining

and increasing surplus, we find results consistent with this hypothesis. Premium spillovers

occur exclusively during declining surplus periods, whereas increases in rejection rates for

unaffected areas are concentrated in periods of increasing surplus.

A natural question that follows is how households respond to these additional costs.

We find that, on average, households in both affected and unaffected areas increase both

coverage and deductibles, suggesting that they take on greater liquidity risk while seeking

to increase insurance against disaster risk. However, examining heterogeneity by zip code

income reveals distinct patterns in unaffected areas. In high-income neighborhoods, where

premium increases are more pronounced, households respond by increasing coverage and

deductibles. In contrast, households in low-income unaffected areas do not make similar

adjustments but are more likely to initiate litigation and appraisal in response to the higher

rejection rates they experience. In affected areas, coverage and deductible increases are more

pronounced in low-income neighborhoods, where price sensitivity is higher, while litigation

and appraisal rates remain unchanged.

Using Citizens as our setting offers unique advantages and certain limitations for our

analysis. As Florida’s insurer of last resort, Citizens is designed to provide insurance to all

residents and improve accessibility, particularly for those unable to obtain coverage from

private insurers. The fact that climate risk significantly affects insurance policies even for

an insurer of last resort raises serious concerns about the accessibility and reliability of

insurance for consumers, especially in high-risk areas. However, this setting differs from

private insurers, and our results may not fully generalize to broader insurance markets.

3We verify that a measure of competitor surplus is positively correlated with Citizens’ surplus in section 3.
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Nevertheless, to the extent that similar mechanisms—such as strategic pricing and financial

constraints—are at play, our qualitative findings are likely to hold. Furthermore, insurers of

last resort are not unique to Florida; many states in the U.S. and regions around the world

have adopted similar institutions.4 Documenting and understanding these effects is therefore

essential for informing policy and ensuring the resilience of these critical safety nets in the

face of growing climate risks.

Our paper contributes to the growing literature on the intersection of climate risk and

real estate markets, including mortgages and homeowners’ insurance.5 In the context of

mortgage markets, Sastry (2021) finds that lenders require higher down payments from

borrowers who underinsure, likely due to concerns about post-disaster default. An et al.

(2024) examine the impact of wildfires on housing and mortgage outcomes, emphasizing the

role of insurance constraints. Ge et al. (2025) demonstrate that rising homeowners’ insurance

premiums—independent of direct disaster exposure—can increase mortgage default risk,

while Ge et al. (2024) find that exogenous flood insurance premium increases reduce mortgage

take-up rates. Sastry et al. (2023) show that mortgage defaults rise in areas with high

insurer insolvency following disasters, highlighting the financial fragility caused by insurance

market disruptions. Issler et al. (2024) and Eastman and Kim (2023) further investigate how

state insurance regulations shape market responses to disaster risk, particularly their role in

premium adjustments and coverage availability.

Within the insurance sector, studies have examined both how insurance affects post-

disaster recovery and how disaster risks influence insurance markets. Cookson et al. (2024)

and Sastry et al. (2024), for example, highlight the prevalence of underinsurance in high-

4In the United States, more than 30 states have established programs, often known as FAIR (Fair Access
to Insurance Requirements) plans, to provide insurance coverage to individuals and businesses unable to
obtain it in the regular market (e.g., see NAIC FAIR Plans). Internationally, countries such as Turkey,
Mexico, and New Zealand have implemented public entities or compulsory catastrophe pools to serve as
insurers of last resort, ensuring coverage in high-risk areas (e.g., see here for more details.).

5Several papers explore the extent to which future climate risks are capitalized into real estate prices.
See, for example, Bernstein et al. (2019); Keys and Mulder (2020); Bakkensen and Barrage (2021); Baldauf
et al. (2020); Giglio et al. (2021); and Murfin and Spiegel (2020). Refer to Acharya et al. (2023) and Giglio
et al. (2020) for a discussion on the broader literature in the intersection of climate risk and finance.
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risk areas, underscoring the systemic issues that leave many properties inadequately covered

against potential losses. Born and Viscusi (2006) use insurer-by-state level data and doc-

ument how natural disasters reduce total premiums earned by insurers in affected states,

decrease the number of firms offering coverage, and lead to insurer exits from the market.

Sastry et al. (2023) shows that the composition of insurers changes due to climate-related

losses as traditional insurers withdraw from high-risk areas and less stable insurers enter to

fill this gap, thereby increasing vulnerabilities in mortgage markets. Boomhower et al. (2023)

and Boomhower et al. (2024) analyze how property insurance markets adapt to climate risk,

focusing on regulatory constraints and risk selection. Keys and Mulder (2024) demonstrate

that rising reinsurance costs, driven by increasing disaster risks, are passed on to homeowners

through higher insurance premiums, disproportionately affecting disaster-prone areas.

We extend this literature by providing the first evidence of how insurers pass on climate

risk to insurance contracts through multiple channels and across different populations, in-

cluding areas unaffected by disasters. We do so in the context of an insurer of last resort and

highlight how consumer price elasticity and financial constraints shape this pass-through.

Unlike previous studies, we document not only regional spillovers from cost shocks but also

how these dynamics unfold through both price and non-price mechanisms. By showing that

insurers redistribute costs across households in distinct ways, our findings raise important

questions about equity and affordability in insurance markets.

2. A Model of Insurance Spillovers

We first present a simple model to organize our empirical findings. We begin by exploring

how an insurer of last resort (henceforth, Citizens) should set premiums and manage claims

across geographic regions when they experience losses to their capital, e.g. due to a hurricane

or a major storm. We then explore how these their decisions depend on the stability of the

private market and cross-sectional differences in demand across locations.
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2.1. Model Setup

We assume that Citizens makes two sets of decisions. First, they set premium rates, Pℓt,

in each location, ℓ ∈ L, to hit a price target, P̂ℓt. In standard models of insurance with

differentiated demand (e.g., Koijen and Yogo 2015), one can think of this price target as

the standard markup over marginal cost. We present a generalized structure to allow for

motives beyond profit maximization, given that Citizens is an insurer of last resort.

Second, Citizens determines how many claims to reject in each location. In each time

period and location, households will decide whether or not to file a claim. Given this decision,

the claim rate will be Cℓt, which Citizens takes as given. Citizens manages its claims through

rejections. By rejecting a fraction χℓt of claims in location ℓ, Citizens can reduce their

effective claim rate to (1−χℓt)Cℓt. The purpose of our model is to highlight how pricing and

claims management interact in different states of the world.

Citizens has two objectives: hit their price targets and minimize capital losses. The latter

objective is similar to the literature on financial frictions in insurance markets, such as Koijen

and Yogo (2015) and Oh et al. (2022). Our departure is that Citizens cares about changes

in their capital rather than the level. This assumption is reasonable if Citizens, being a

state-owned entity, has to demonstrate to taxpayers and state legislators that it is managing

its capital well. Pricing decisions matter for both objectives, while claims management only

matters for minimizing capital losses.6

We begin by specifying the dynamics of Citizens’ capital. We assume their only liabilities

are reserves, which are dedicated to paying out insurance claims. Since damages and claims

are uncertain, we assume that Citizens approximates future claims through historical cost

accounting. We refer to Vℓt as the reserve rate, i.e. the dollar amount of reserves held per

policy to accommodate future realized losses.

6It is reasonable to suspect that Citizens has other motives to manage their claims, such as minimizing
fraudulent payments. It is straightforward to add claims management to normal periods by including an
additional cost management term in Citizens’ objective function, but doing so offers similar conclusions while
complicating the analysis.
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Citizens dedicates part of their premium revenues and their existing assets, At, to building

up their reserves. Let Qℓt be the coverage written in location ℓ at time t. Then Citizens’

capital evolves according to

(1) Kt = RK
t Kt−1 +

∑
ℓ∈L

PℓtQℓt︸ ︷︷ ︸
Period t Assets

−
∑
ℓ∈L

VℓtQℓt︸ ︷︷ ︸
Period t Liabilities

where the return on existing capital satisfies

(2) RK
t Kt−1 = RtAt−1︸ ︷︷ ︸

return on
non-insurance assets

+
∑
ℓ∈L

[
RtPℓt−1 − (1− χℓt)Cℓt

]
Qℓt−1︸ ︷︷ ︸

resolution of insurance claims

,

The total coverage written in period t, Qℓt, depends on both current premium rates, Pℓt, and

current rejection rates, χℓt. The idea is that if Citizens rejects a large number of existing

claims, households will update their beliefs about rejection rates. They will therefore be less

likely to insure with Citizens since there will be a higher (subjective) likelihood that their

future claims will be rejected. This implies that rejecting claims has a cost through the loss

of future demand, which can reduce the ability for Citizens to raise capital in response to

future losses.

We model Citizens’ decisions through two cost functions. Citizens’ first objective function

is H(Pℓt, P̂ℓt), which captures the cost to Citizens of deviating from their price target in

location ℓ. Second, let F (Kt, Kt−1) be their cost of capital losses. The two costs functions

satisfy the following properties.

Assumption 1: Cost Function Properties

Price targeting costs satisfy H(P, P ) = 0, H1(P, P ) = 0, H11 > 0, and H(P, P ′) > 0 if

P ̸= P ′. Capital loss costs satisfy F1 < 0, F2 > 0, and F (K,K ′) = 0 if K > K ′.

Assumption 1 implies that price targeting costs are minimized when Pℓt = P̂ℓt. The convexity
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of H(·, ·) reflects increasing costs of deviating from this target. The assumption on the costs

of capital losses implies that Citizens’ faces a higher cost when their capital declines more,

but that the cost is negligible when their capital increases.

In each period, Citizens sets prices and rejection rates across locations to minimize the

sum of their price targeting costs and cost of capital losses. The set of premium rates,

{Pℓt}ℓ∈L, and rejection rates, {χℓt}ℓ∈L, solves

minimize
{Pℓt,χℓt}ℓ∈L

F (Kt, Kt−1) +
∑
ℓ∈L

H(Pℓt, P
∗
ℓt)

subject to Kt = RK
t Kt−1 +

∑
ℓ∈L

(Pℓt − Vℓt)Qℓt.

Given our framework, we now turn to an exploration of Citizens’ optimal behavior in the

presence of capital losses.

2.2. Spillovers Due to Capital Losses

Given Citizens’ objective, how should they set prices and manage claims across locations?

We begin with a study of pricing behavior. In what follows, we will care about the difference

between Citizens’ prices targets, P̂ℓt, and what we refer to as the monopolistically competitive

price,

(3) PM
ℓt ≡

(
εℓt

εℓt − 1

)
Vℓt, εℓt = −Pℓt

Qℓt

∂Qℓt

∂Pℓt.

We will make the explicit assumption that P̂ℓt = Vℓt < PM
ℓt for all ℓ and t. This condition is

consistent with Citizens’ mandates. First, Citizens must set rates that are actuarially sound

(Citizens Property Insurance Corporation, 2024). However, they also strive to be uncompet-

itive with the private market so as to function properly as an insurer of last resort. According

to a recent report, Citizens’ CEO stated that Citizens would need to raise premiums by 96%

to be “uncompetitive” with current market conditions (Hudson, 2024). According to the
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article, Citizens allowed a 14% rate increase across many locations, roughly 40% higher than

their permitted rate increase in 2022, citing skyrocketing market prices. In other words,

when the private market is under distress and setting high rates, Citizens follows. As we

will show, the strength of spillovers are sensitive to market conditions.

The optimal pricing decisions in period t are determined through the first order conditions

with respect to each location’s premium rate:

(4) H1(Pℓt, Vℓt) + F1(Kt, Kt−1)

(
Qℓt + (Pℓt − Vℓt)

∂Qℓt

∂Pℓt

)
= 0.

When Citizens’ previous capital position does not decline, RK
t ≥ 1, they face no costs

associated with their capital unless they record more reserves per policy than they collect in

premiums since Kt ≥ Kt−1. Therefore, they will optimally neutralize the costs of deviating

from their price targets: H1(Pℓt, Vℓt) = 0 when Pℓt = Vℓt. When RK
t < 1, however, setting

Pℓt = Vℓt for every location leaves Citizens with a capital loss and, therefore, a non-zero

marginal benefit of raising capital, F1(Kt, Kt−1) ̸= 0. In this case, Citizens has to trade off

capital losses and the cost of deviating from their price target. The following proposition

formalizes our argument.

Proposition 1: Optimal Pricing and Spillovers

Citizens’ optimal premium rate that they set in location ℓ at time t satisfies

Pℓt = Vℓt if RK
t ≥ 1

Pℓt ∈ (Vℓt, P
M
ℓt ) if RK

t < 1

Further, if RK
t < 1, Pℓt is increasing in PM

ℓt .

Proof: See Appendix A.1.

The proposition implies that even absent an increase in reserve values, premiums in a loca-

tion may increase due to a decline in capital, consistent with Koijen and Yogo (2015) and Oh
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et al. (2022). We refer to the resulting price change as a spillover. The size of the spillover is

stronger if the private market itself is increasing rates quickly. This is case in the current en-

vironment, according to Citizens’ CEO (Hudson, 2024). Since private insurers are distressed

and setting high rates (Oh et al., 2022), demand elasticities are low from the perspective

of Citizens, which increases the monopolistically competitive price.7 This effectively relaxes

Citizens’ price target costs, allowing them to raise prices across the board to keep up with

the private market.

A direct consequence of Proposition 1 is that conditional on capital losses, Citizens

can raise their capital more in the current period when the private market is distressed.

Therefore, they should not feel the need to supplement their capital through claim rejections.

But when the private market is stable, Citzens can only recover a fraction of their capital,

leaving them exposed to losses. It is then that they may choose to pull this additional lever.

We can see this through their first order condition with respect to rejection rates:

(5) F1(Kt, Kt−1)

[
CℓtQℓt−1 + (Pℓt − Vℓt)

∂Qℓt

∂χℓt

]
= 0.

It will be useful for interpretation to specify a functional form for Qℓt. In particular, we

let Qℓt ≡ Nℓtqℓt(Pℓt)f(χℓt). One can interpret Nℓt as the size or population of location

ℓ. The term qℓt(Pℓt) is the price-component of demand. It is therefore decreasing in Pℓt,

and carries the associated elasticity εℓt. The relevant component for claims management is

f(χℓt), which we assume is decreasing and concave in χℓt and satisfies f(0) = 1 and f(1) = 0.

The interpretation is that when there are no rejections, demand is at its highest, but when

Citizens rejects every claim, demand is non-existent. With this functional form, we come to

our first result on claims management in the presence of capital losses.

7For example, in differentiated demand systems in which firms have price impact (e.g., Atkeson and
Burstein 2008), optimal pricing implies an elasticity of sℓt + (1− sℓt)εℓt, where sℓt is Citizens’ market share.
As other insurers substantially raise prices, sℓt increases, lowering the elasticity and increasing markups over
fair value.
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Proposition 2: Optimal Claims Management

Suppose RK
t < 1. Citizens’ optimal rejection rate satisfies

χℓt = g

(
CℓtQℓt−1

(Pℓt − Vℓt)qℓt(Pℓt)Nℓt

)

where g(·) is an increasing function. As such, conditional on losses CℓtQℓt−1, χℓt is

decreasing in PM
ℓt .

Proof: See Appendix A.2.

Proposition 2 highlights an important contrast between pricing and claims management:

the two forces move in opposite directions. When the market is uncompetitive due to the

distress of private insurers, Citizens has substantial pricing power, setting Pℓt well above

actuarial values even in the absence of losses and generating large profits. But at the same

time, increasing rejection rates for existing claims stifles their profits in the current period,

since doing so would offset their pricing power. As a result, rejection rate spillovers are small

when pricing spillovers are high.

Conversely, when pricing power is low, each market is no longer as profitable for Citizens.

They therefore are more willing to stifle future demand by increasing rejection rates, which

helps them limit their losses and increase their capital. Therefore, rejection rate spillovers

are high when pricing spillovers are low.

2.3. Demand Heterogeneity and the Strength of Spillovers

The previous section highlighted how spillovers vary in the time series: when insurance

markets are distressed, spillovers occur on the pricing margin; when they are not distressed,

spillovers occur on the claims margin. But what about in the cross-section? Are spillovers

stronger in poor or rich areas?

The effect will ultimately depend on the sensitivity of local demand. We do not take a

stand on the direction of demand elasticities across households, but instead present a general
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result in Proposition 3.

Proposition 3: Demand Heterogeneity and Spillovers

Suppose RK
t < 1, and consider two locations, 1 and 2, such that V1t = V2t = Vt and

Q1t(Vt) = Q2t(Vt). If ε1t(P ) > ε2t(P ) for any price P , and if ∂εℓt/∂P ≥ 0 for any ℓ,

then P2t > P1t > Vt.

Proof: See Appendix A.3.

The result is intuitive: the cost to raising premiums above fair value are identical in both

locations, but since location 1 has a higher price elasticity, Citizens is less able to exploit

their market power to recoup their capital losses. Households in location 2 have less elastic

demand, so higher premiums do not scare off demand as much. Citizens can therefore

raise premiums and attract more revenues. Therefore, conditional on the state of the private

market, pricing spillovers are stronger in low-elasticity locations. In particular, if high-income

households are less elastic, then we should expect pricing spillovers to occur in high-income

locations rather than low-income locations.

The results of Section 2.2 hint that spillovers on the claims margin may go in the opposite

direction. In fact, the mechanism is similar: from Citizens’ perspective, the ideal claims to

reject are precisely those that are associated with small premium revenues. If low-income

households are more price elastic, then according to Proposition 3, markups — and therefore

profitability — will be lower in poorer locations. We confirm this in the following proposition.

Proposition 4: Demand Heterogeneity and Claims Spillovers

Suppose RK
t < 1, and consider two locations, 1 and 2, such that V1t = V2t = Vt and

Q1t(Vt) = Q2t(Vt). Suppose further that both locations face the same potential losses,

C1tQ1t−1 = C2tQ2t−1. If ε1t(P ) > ε2t(P ) for any price P , and if ∂εℓt/∂P ≥ 0 for any ℓ,

then χ1t > χ2t > 0.

Proof: See Appendix A.4.
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Here, the claims spillovers occur purely due to profitability differences across locations, and

do not incorporate household heterogeneity into the demand response to rejection rates. But

in theory, low-income household demand may be less responsive than high-income household

demand.8 This may be the case if high-income households are more likely to self-insure if

they feel that their future claims will be rejected with a high probability. In this case,

conditional on the rejection rate, their demand would decline by more relative to low-income

households, where self-insurance is unattractive or infeasible. This effect would therefore

lead to amplified rejection spillovers.

2.4. Model Summary and Empirical Predictions

Our model admits a variety of empirical predictions. First, in response to a large shock to

Citizens’ capital, we expect spillovers to occur. However, the dimension of the spillovers

should be sensitive to market-level factors in the time series and household heterogeneity in

the cross-section. In particular, we arrive at the following testable predictions.

1. Pricing spillovers are more likely to occur and are more pronounced in periods of private

market distress.

2. Claims spillovers are more likely to occur and are more pronounced in periods of private

market stability.

3. Pricing spillovers are larger for less price sensitive (e.g., high-income) households and

regions

4. Claims spillovers are larger for more price sensitive and less profitable (e.g., low-income)

households and regions

Equipped with these predictions, we now turn to our empirical setting.

8We could incorporate this in the model by assuming the claims component of demand, f , depends on
household income. This would be consistent with low-income households having a more concave f , so that
only very large rejection rates noticeably reduce demand.
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3. Data & Empirical Methodology

This section outlines the data used in our analysis and its sources, details the construction

of the sample, examines the determinants of insurance premiums, and describes our main

empirical methodology.

3.1. Data

Our analysis relies on the intersection of five different datasets obtained from various sources.

The primary dataset consists of individual policy-level home insurance contracts and claims

from Citizens Property Insurance Corporation, a non-profit organization that serves as

Florida’s insurer of last resort. The dataset is comprehensive, covering all contracts and

claims issued by Citizens from 2002 to September 2023. As Florida’s largest provider of

multi-peril home insurance policies, Citizens accounted for 23% of the state’s insurance mar-

ket at its peak and 15% of the market in 2023. As an insurer of last resort, Citizens provides

coverage to all homeowners, including those unable to obtain insurance from private insurers.

Despite this role, it offers coverage at competitive premiums, making it a valuable bench-

mark for comparison with private insurers. For instance, Table B.1 shows that Citizens’

average premium is comparable to that of private insurers for a Florida masonry home built

in 2005 with a $300,000 replacement value, a 2% hurricane deductible, a $500 non-hurricane

deductible, and no claims in the past three years.

The contract-level dataset provides detailed information on both policy and property

attributes. Policy details include policy and term numbers, effective, renewal and cancella-

tion dates, policy premiums, and any mandatory charges levied. The dataset also contains

information on various deductibles and coverage types, including Coverages A through D.

Coverage A insures the dwelling, protecting the structure of the home, including floors,

windows, and doors. Coverage B covers other structures not attached to the home, such

as fences, sheds, and driveways. Coverage C insures personal property, while Coverage D
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provides loss-of-use coverage, helping pay for additional living expenses while the home is

being repaired. Deductibles are categorized by event type, including hurricane, windstorm,

sinkhole, and other perils.

Property-level details include the full street address, year of construction, total dwelling

area, number of units in the building, and number of stories, among other characteristics.

The claims dataset contains detailed attributes about claims and the claims process, such

as claim and loss dates, resolution dates, cause of loss, claim status (e.g., approved, denied),

and net losses incurred (which reflects the total reimbursement provided). We merge these

datasets using policy and term numbers as unique identifiers, allowing us to link policy

characteristics with claims data for a comprehensive analysis.

To analyze the impact of hurricanes and tropical storms on insurance policies, we obtain

climate event data from the Spatial Hazard Events and Losses Database for the United

States (SHELDUS). This database provides detailed information on the timing of events,

disaster type, affected counties, and property loss amounts at the county level. SHELDUS

compiles data from multiple federal and state agencies, ensuring comprehensive coverage

of disaster-related losses. The dataset includes both insured and uninsured losses, allowing

us to capture broader economic damages beyond claims paid by insurers. We leverage

this dataset to examine the spillover effects of hurricanes and tropical storms in the home

insurance market, focusing on how insurers adjust pricing and claim evaluation in both

directly affected and unaffected areas.

We augment this data with zip-code-level income data from the Internal Revenue Service

(IRS) and flood risk data from the Federal Emergency Management Agency (FEMA). The

IRS income data allows us to assess whether insurers pass on costs differently based on the

economic characteristics of policyholders and whether lower-income households face greater

financial barriers in obtaining or maintaining coverage. We merge this data with other

datasets using zip codes.

FEMA flood risk zone information comes from flood zone Shapefiles, which classify prop-

17



erties based on different levels of flood risk. Properties are categorized as either no-risk or at

flood risk if they are located within the 100-year or 500-year floodplain. The 100-year flood-

plain represents areas with a 1% annual chance of flooding, while the 500-year floodplain

includes areas with a 0.2% annual chance. We spatially merge the flood zone Shapefiles with

property locations using geocodes.

Finally, we collect financial data from Citizens’ quarterly and annual financial statements,

which are publicly available on the company’s website. This dataset includes key financial

metrics such as net losses, loss adjustment expenses, net premium revenues, surplus, assets,

and liabilities, allowing for a detailed examination of Citizens’ financial standing and its

ability to absorb climate-related risks.

3.2. Summary Statistics

Table 1 presents key statistics for the policies in our sample, which consists of 18,677,633

policy-year observations covering 4,119,075 properties underwritten between 2002 and 2023.

The average premium is $1,748, with a right-skewed distribution, as indicated by the median

premium of $1,400 being lower than the mean. The variation in policy costs is reflected in

the 10th and 90th percentiles of premiums, which are $423 and $3,469, respectively.

In addition to premiums, Citizens levies mandatory charges to help cover potential losses

and maintain solvency, particularly in response to catastrophic weather events. The average

mandatory charge is $99, with a median of $60. The non-zero 10th percentile suggests

that most policies incur additional charges, which account for approximately 5.4% of the

total premium on average. The distribution of total charges (i.e., the sum of premiums and

mandatory charges) closely mirrors that of premiums, with an average of $1,847.97 and a

median of $1,478.

The premium-to-coverage ratio, which captures policies’ relative cost in percentage of

coverage, has a mean and median of 1.64 and 1.06, respectively. The average mandatory

charges-to-coverage ratio of 0.09 shows that these charges represent a small fraction of the
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coverage amount.

Figure 1 plots the average premium and premium-to-coverage ratio for policies issued by

Citizens over the sample period. We present separate trends for homes in high- and low-risk

areas based on FEMA’s classification to examine how insurance costs evolve across different

risk levels. High-risk (low-risk) areas are defined as properties located within (outside) the

100-year or 500-year floodplain. Panel A displays the premium, while Panel B shows the

premium-to-coverage ratio.

Consistent with other data sources, we find that both premiums and the premium-to-

coverage ratio for policies issued by Citizens have increased over the last two decades.9

Moreover, we observe that both the premium and the premium-to-coverage ratio have risen

at a faster rate in high-risk areas compared to low-risk areas, indicating a growing cost

differential based on risk exposure.

As reported in Table 1, the average approved claim per policy-year is $747, with a high

standard deviation of $8,256, reflecting the significant variability in claims. Notably, the

median claim amount is $0, and even the 90th percentile shows no claims, indicating that

the majority of policy-years do not have any claims payments. The average claim-to-premium

ratio is 0.46, suggesting that, on average, Citizens paid 46 cents in claims for every dollar

collected in premiums.

3.3. Determinants of insurance premium

To better understand Citizens’ pricing function, we analyze a hedonic model for premiums.

Risk-based pricing suggests that premiums should increase with coverage, as higher coverage

raises the insurer’s financial risk, expected losses, and capital requirements. Motivated by

this, we begin by plotting premiums against coverage to examine the nature of their relation-

ship. Panel (a) of Figure 2 presents this plot, revealing a strong linear relationship between

premium and coverage. Similarly, panel (b) plots mandatory charges against coverage and

9For example, National Oceanic and Atmospheric Administration (NOAA) (2025); Federal Emergency
Management Agency (n.d.); United Nations Office for Disaster Risk Reduction (n.d.).

19



also finds a linear relationship.

Given this visual evidence, we formally evaluate the relationship using a simple ordinary

least squares (OLS) model. Table 2 presents the results. Column I shows that premiums are

primarily driven by coverage amounts, with coverage alone explaining 55% of the variation in

premiums, highlighting its dominant role in pricing. Adding property fixed effects increases

the R-squared by 34%, suggesting that property-level time-invariant characteristics account

for a significant portion of the variation in premiums. Overall, property-level characteris-

tics combined with coverage explain 89% of the total variation. Surprisingly, time trends

contribute only 2% to the explained variation.

On the other hand, property-level characteristics and coverage together explain only 76%

of the variation in mandatory charges, with property-level characteristics having greater ex-

planatory power, as shown in columns IV through VI. Specifically, we find that coverage

amounts account for 37% of the variation in mandatory charges, while property-specific char-

acteristics—such as location and structural attributes—explain approximately 39%. Addi-

tionally, aggregate time-series factors contribute 14% to the variation in mandatory charges.

Overall, these findings underscore the dominant role of policy-level factors, such as cov-

erage and property characteristics, in determining total policy costs and suggest that risk

appropriately plays a significant role in Citizens’ pricing function, as it does for any insurer.

3.4. Stacked Sample Construction

We begin with the SHELDUS dataset, which contains information on various weather-related

events, including wildfires, droughts, coastal storms, floods, earthquakes, tornadoes, and

hurricanes. We restrict the sample to major loss events classified as hurricanes or tropical

storms (henceforth, hurricanes) with reported damages exceeding $2 million (the median) for

any county in Florida. Using hurricane-related losses from SHELDUS, rather than relying

solely on a predefined list of major hurricanes in Florida, allows us to capture events that

caused significant damage without making direct landfall in the state. For example, the
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Florida Climate Center does not classify Hurricane Katrina as a major hurricane impacting

Florida, even though it caused substantial damage to counties in southern Florida.10

This yields a set of sixteen hurricane events for our analysis. These hurricanes caused

damages across 54 unique counties, corresponding to 125 county-year-month observations

as the affected (treated) groups. Table B.2 lists these sixteen hurricanes, along with their

names and the number of affected counties (i.e., those with reported damages exceeding $2

million).

Next, we identify all policies that were in effect during these hurricane events. For each

county-event combination, we select policies that were already active in both affected and

unaffected counties. Policies in affected counties serve as the treated group, while those in

unaffected counties act as the control group for the respective event. We then stack these

samples across different events, allowing the same counties to serve as treated for some events

and control for others.

With the stacked sample of policies in place, we merge time-series data for all policies,

allowing us to track outcomes over time. To ensure comparability across similar geographies

and risk levels, we exclude policies in counties that were never affected by any hurricane

event throughout the sample period. Specifically, we remove policies in counties that never

experienced a loss exceeding $2 million.11 Finally, we restrict the analysis to three years

before and after each event, resulting in a final sample of over 800,000 policies.

3.5. Empirical Methodology

Our empirical setting uses hurricanes and storms to evaluate the association between natural

disasters and insurance contracts. Since these disasters occur at different times across loca-

tions, we employ a stacked DiD approach using hurricanes/storms as the treatment events.

The stacked DiD framework helps address concerns raised in the literature regarding esti-

mation bias from staggered difference-in-differences specifications with two-way fixed effects

10See Florida Climate Center for a list of major hurricanes in Florida.
11Our results remain robust even when including these counties as shown in Table B.3.
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(Callaway and Sant’Anna, 2021; Cengiz et al., 2019; Goodman-Bacon, 2021; Gormley and

Matsa, 2011; Sun and Abraham, 2021), thereby providing consistent and unbiased estimates

of the effects of disasters on insurance contracts.

We first identify hurricane-affected counties using SHELDUS data. We then restrict

our sample to home insurance policies on properties located in counties that experienced

hurricane-related losses exceeding two million USD (the median) at some point during the

sample period. This restriction ensures that we compare counties with relatively similar

risk profiles, mitigating concerns about systematic differences between treated and control

groups. Our identification strategy leverages variation in hurricane timing, comparing coun-

ties exposed to hurricanes earlier versus later.

Formally, we estimate the following model:

(6) Outcomep,c,t = β × Postc,t × Treatedp,c + γ × Postc,t + αp,c + ϵp,c,t

where Outcome denotes various insurance contract-related variables for policy p in treatment

cohort c during year t. The variable Post is a dummy that takes a value of one for all time

periods following a natural disaster within cohort c, while Treated is a dummy that equals

one for policies on properties located in counties affected by hurricanes during treatment

cohort c. αp,c represents policy × cohort fixed effects, which control for any time-invariant

observable or unobservable differences across policies within the same cohort. Since hurricane

shocks are measured at the county level, we cluster standard errors at the county level to

account for spatial correlation.

Our theoretical model predicts that insurers adjust premiums and rejection rates not only

for disaster-affected areas but also for unaffected areas. As a result, we focus on both β and γ

coefficients. The coefficient β captures the differential effect of disasters on outcome variables

for affected areas relative to unaffected areas, while γ captures changes in outcomes for

unaffected areas. This differentiates our setting from traditional stacked DiD models where
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the coefficient of interest is mainly the interaction variable. Because we aim to estimate

γ, we do not include time fixed effects, as they would be collinear with the Post variable.

Instead, we rely on single differences in outcome variables to account for time trends.

To assess the possibility of differential trends between policies in affected and unaffected

areas and to analyze the effects over time, we estimate the dynamic version of equation 6

separately for each group. Specifically, we estimate the following model:

(7) Outcomep,c,t =
+3∑

t=−3

βt1c,t + αp,c + ϵp,c,t

where the outcome variables and fixed effects remain the same as previously defined. 1t is

an indicator variable that takes a value of 1 for a given event time and 0 otherwise. We

exclude the year three time periods prior to the event as the benchmark. Thus, βt captures

the change in the outcome variable at each event time relative to the benchmark year prior

to disasters.

In addition, we estimate the stacked difference-in-differences regressions separately across

different time periods and sub-samples to examine heterogeneity in our findings based on

the income of the insured and changes in private insurers’ surplus.12

4. Climate Risk and Insurance Contracts

4.1. Climate Risk and Claims

We begin by validating our empirical setting by examining how claims evolve around hurri-

cane events in affected areas (those hit by hurricanes) and unaffected areas (those not yet

hit by hurricanes). Claims should mechanically increase in affected areas while remaining

relatively unchanged in unaffected areas. Observing this pattern would confirm that our

specification is correctly specified, whereas deviations may indicate endogeneity issues or

12Data on private insurers’ surplus, assets, and Florida homeowners insurance market shares come from
their statutory filings. We access the filings through S&P Capital IQ.
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misspecification.

Panel (a) of Figure 3 plots the dynamic coefficients estimated using equation 7, with

the likelihood of a claim as the outcome variable. Panel (b) presents estimates for claim

amount three years before and after a hurricane. The figure shows coefficient estimates

and 95% confidence interval error bands on event-time dummies, separately for affected and

unaffected policies, relative to the year before the hurricane.

Across both outcomes, we find that the treated and control groups exhibit similar trends

before and after hurricanes, supporting the parallel trends assumption. However, we observe

a significant spike in claims for the treated group during the hurricane year, with approved

claims increasing by approximately 100% relative to the control group. In contrast, claims

in the control group remain stable throughout the seven-year estimation period, spanning

three years before and three years after the hurricane.

In addition, we find evidence of a decline in approved claims for policies in unaffected

areas during the post-hurricane period. The decline is approximately 50%, with the effect

being statistically significant at the 95% confidence level in the year immediately following

the hurricane.

Table 3 reports coefficients for similar analysis estimated using equation 6. While for

the unaffected policies the likelihood of filing a claim declines by 1.6 percentage points (pp)

following hurricanes, the treated group experiences an increase in this likelihood of 2.5pp.13

Overall, the results in this section support the validity of our empirical specification in

capturing the effects of disasters.

4.2. Climate Risk Pass-through

To test the predictions of our model, we examine how insurers pass through climate-related

costs to home insurance policies via both ex-ante charges and ex-post claim outcomes. Ex-

ante charges include premiums and mandatory charges imposed by insurers to offset negative

13Since 0.041 reflects the relative estimate, the total effect for the treated group is given by 0.041-
0.016=0.025.
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shocks such as climate-related costs. Ex-post claim outcomes represent approval/rejection

rates. Because we estimate changes for both affected and unaffected groups around disaster

events, we do not include time fixed effects, as they would be collinear with the time dimen-

sion (i.e., Post variable in static setting). Instead, we rely on single differences in outcome

variables to account for time trends.

Figure 4 plots the evolution of premium three years before and after a hurricane. Panel (a)

plots the coefficient and error bands at a ninety-five percent confidence level for ∆log(Premium)

on event-time dummies for the treated and control policies separately relative to three years

before the occurrence of the hurricane. The specification includes policy × cohort fixed

effect. Panel (b) plots similar estimates for ∆Premium to coverage ratio.

We find that premiums evolve similarly for treated and control groups in the years prior to

hurricanes, consistent with parallel trends. However, during the hurricane year, the affected

areas (i.e., treated group) experience a discrete jump in premiums, which persists for two

additional years. This pattern suggests that premiums for the treated group continue to

rise for three years following a hurricane. In contrast, the control group shows a slightly

delayed reaction, with a discrete jump in the growth rate occurring only in the year after the

hurricane. This increase is about half the size of the treated group’s and lasts for two years,

indicating that premiums for the control group rise for two years post-hurricane. Results for

premium-to-coverage exhibit similar patterns.

Figure 5 plots similar results using mandatory charges as the outcome variable. While

the estimates exhibit greater noise, they follow a similar pattern. As before, panel (a) plots

estimates for changes in mandatory charges, while panel (b) examines the ratio of mandatory

charges to coverage. Panel (a) shows that both groups trend similarly before hurricanes,

except for a slight divergence in the year immediately preceding the event. However, both

groups experience a discrete jump in mandatory charges in the two years following hurricanes,

suggesting that insurers increased these charges for both affected and unaffected areas. A

similar pattern emerges when using mandatory charges standardized by coverage as the

25



outcome, except for an outlier jump in the unaffected group for two years before hurricanes.

We next examine how claim rejection rates evolve around hurricanes. Since the same

policy may have multiple claims in a given year, we measure rejection rates in two ways: as

the proportion of claims rejected for a policy-year and as a dummy variable that takes a value

of 1 if at least one claim is rejected during the policy-year. Figure 6 plots results for these

analyses. While the coefficients for treated and control groups are largely indistinguishable

within the 95% confidence interval in the years prior to hurricanes, they diverge in the year

immediately after the hurricane, with rejection rates increasing substantially for the control

group.

We re-estimate the changes in these outcomes using a static DiD model, as specified in

equation 6. Table 4 reports these estimates. Columns I and III report results for premiums

and premium-to-coverage, while columns II and IV examine mandatory charges and manda-

tory charges-to-coverage. Across all outcomes, we estimate a positive coefficient but do not

find a statistically significant association between hurricane events and the outcome variables

for the unaffected groups. This is likely because the effects are not persistent throughout the

post-event period but are instead concentrated in years one and two following hurricanes.

However, the changes are statistically significant for the treated group, likely due to the

more consistent impact over time. The final two columns present results for claim rejection

rates, measured both as the proportion of claims rejected and as a dummy variable for any

rejection. Here, we again find a positive coefficient for the unaffected group, though it is

statistically weak, with a negative and significant estimate for the affected group.

Overall, our results show that climate risk pass-through occurs both through ex-ante

costs and ex-post claim outcomes. Both affected and unaffected groups bear the costs with

average spillovers being smaller in magnitudes than the effects on the treated group.
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4.3. Climate Risk Pass-through: The Role of Local Income

While our pooled analysis suggests that unaffected groups experience smaller spillovers, this

could be masking important heterogeneity in the cross section of locations. For example, our

theory predicts that high elasticity locations will experience lower pricing spillovers than low

elasticity locations, but will pay more ex-post through higher rejection rates. While we do

not estimate property-level elasticities explicitly, we test these hypotheses by conditioning

our sample on zip code income. If low-income households are more sensitive to changes in

premiums (e.g., due to budget constraints), we should expect pricing spillovers to be weaker

in poorer locations, but should also expect these locations to face higher rejection rates

following a diaster.

We test this formally by re-estimating our regressions separately for zip codes that are

below and above median zip code income. Table 5 presents the results. Consistent with the

theory, we find that prices do not increase in low income control locations, but increase by 4%

in high income control locations. This suggests that in response to hurricane losses, Citizens

strategically raises premiums in locations where they can exert their pricing power and raise

capital the most. In a distributional sense, this implies that high-income households in low

risk locations are subsidizing households in risky locations, while low-income households

outside of risky locations are spared. This partially explains the small spillover results in the

previous section: the average spillover effect masks the heterogeneity across regional income

groups.

However, our results also suggest that unexposed low-income households pay in the form

of higher rejection rates on their claims. Households in poor but unexposed locations face

approximately 4 percentage point higher rejection rates after a hurricane, while rich and

unexposed locations do not experience any change. For both high- and low-income locations

that are exposed to the hurricane, rejection rates decline, consistent with Citizens having to

pay out more claims after the disaster.
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4.4. Climate Risk Pass-through: The Role of Capital

Our theory also predicts that in periods of private market distress, spillovers will be higher

due to the elevated pricing power that Citizens has in a less competitive market. We therefore

consider another split on a measure of private market distress. First, we calculate the surplus-

to-asset ratio of each insurance company that sells homeowners insurance in the state of

Florida for each year. We then compute a weighted average of surplus-to-assets across

private insurers, where we use homeowners insurance premiums in the state of Florida as

the weights. We then compute year-over-year changes in this measure and match the changes

to each event. We define “increasing surplus” events as those that occurred when the market

surplus-to-asset ratio was increasing in the prior quarter, and “decreasing surplus” events as

the opposite.14

We estimate our framework for the increasing and decreasing surplus periods in Table 6.

We find that the premium growth rates increase for both treated and control counties when

surplus the private market is more distressed (e.g., decreasing surplus). In particular, the

growth in premiums is 5.8% higher for control counties, and 8.1% higher for treated coun-

ties. But in increasing surplus periods, the premium growth rate increases only for treated

properties (10.1%), but not for control properties. This is consistent with our theory: when

the private market is distressed, private insurers raise prices in all locations (Oh et al., 2022),

which increases Citizens’ pricing power and relaxes their pricing constraints.

At the same time, rejection rates are unaffected in decreasing surplus periods, but in-

crease by 3.9 percentage points only for control counties in increasing surplus periods. This

result is also consistent with our theory: since Citizens is not able to recover their losses

through subsequent price increases when the private market is stable, they resort to increas-

ing rejection rates. This is not the case when the private market is distressed and they have

pricing power.

14Note that this particular sample split is almost identical to splitting on the median in-sample surplus
change.
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4.5. How do households respond?

We have primarily focused our analysis so far on Citizens’ behavior. We now shift our focus

to the household sector. Households, who have some control over the characteristics of their

policies, may respond both to heightened climate risk and to Citizens’ own responses.

We explore four margins of adjustment. First, we consider the log change in total cov-

erage associated with each property. Households may increase or decrease their coverage in

response to a hurricane. If Citizens raises prices, households may opt for a lower coverage

level to reduce their premiums. But at the same time, it is known that households are gener-

ally underinsured (Sastry et al., 2024), largely due to informational frictions (Cookson et al.,

2024). In response to a hurricane, households may opt for higher coverage, recognizing that

they were underinsured in the first place.

Second, we consider how households change their deductibles. It is not ex-ante obvious

which direction deductibles should change: if households only internalize changes in prices,

we would expect deductibles to move in the same direction, as higher deductible policies are

typically cheaper. But if households also factor in heightened climate risk, they may opt for

lower deductibles, especially in treated areas.

Third, we address households’ responses to heightened rejection rates through subsequent

litigious activity. If households feel that their claims were wrongly rejected, they may respond

by filing a lawsuit against Citizens. Our dependent variable for this test is an indicator for

whether or not the household files any litigation against Citizens in a given year. We can

therefore interpret our estimates as litigation rates.

Last, we explore whether households dispute their claim outcome through external ap-

praisers. If a household incurs damages, Citizens will provide an off-the-shelf quote for the

household that may be undervalued. Households have the option to acquire an external

quote which may increase the value of their insurance claim. We may expect to see an

increase in the appraisal rate in locations with higher rejections, as Citizens’ may also be

responding on the intensive margin when cutting back on claims.
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We first report results for our full sample in Table 7. We find that households respond

to a hurricane by increasing both their coverage and their deductibles. This is consistent

with households increasing disaster insurance, but reducing insurance for smaller events that

are now less likely to meet their deductible. The responses are positive for all households,

but more so for treated households. This suggests both heightened salience and cost-cutting

behavior. We do not find any response of litigious behavior to a hurricane event for either

treated or control counties, though treated counties do increase their appraisal rate by 5.5

percentage points.

We then split our results by household income in Table 8. The results are consistent with

the heterogeneous effects of cost pass-through across income groups. Low-income households

only alter their coverage and deductibles in treated locations, while high-income households

alter these characteristics in both sets of locations. However, low-income households in

control locations increase both litigation and appraisal rates, which is likely in response to

the increase in rejections. Low-income treated locations do not experience a statistically

significant difference in litigation rates relative to the control group, though the estimate

is negative, suggesting that the effects are concentrated in control locations. High-income

locations do not experience an increase in litigation rates.

5. Conclusion

This paper investigates how natural disasters influence homeowners’ insurance contracts.

Using detailed policy-level data from Citizens, we demonstrate that climate risks significantly

impact insurance pricing, both in disaster-affected areas and through spillover effects to

unaffected areas. In disaster-affected areas, premiums increase immediately and continue to

rise for three years following a hurricane. In unaffected areas, premiums exhibit a delayed

and smaller increase, with growth persisting for two years post-disaster. Beyond premiums,

we show that insurers also pass on costs through rejection rates. While rejection rates remain

unchanged in disaster-affected areas, they increase in unaffected areas, highlighting a novel
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dimension of climate risk spillovers. These findings indicate that even households in low-risk

areas bear part of the financial burden associated with climate risk—either through higher

premiums or reduced access to coverage.

Spillover effects are heterogeneous based on price sensitivity. In high-income areas, where

households are less price-sensitive, insurers pass on costs through higher premiums, whereas

in low-income areas, where households are more price-sensitive, insurers increase rejection

rates instead. This suggests a strategic redistribution of costs, with both low- and high-

income households in low-risk areas subsidizing those in high-risk areas through different

mechanisms. Additionally, insurers’ financial constraints shape how these costs are passed

through. During periods of decreasing surplus, premium increases are broader, affecting

both affected and unaffected areas. In contrast, during periods of increasing surplus, insurers

primarily adjust rejection rates rather than premiums, particularly in unaffected areas.

Our findings highlight the dual role of price and non-price mechanisms in insurers’ re-

sponses to climate risk and underscore how consumer price sensitivity and insurers’ financial

condition shape the distribution of costs across households. As climate risks intensify, these

results raise important questions about equity and affordability in insurance markets, par-

ticularly as insurers adjust their pricing and underwriting strategies to manage growing risk

exposure.
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I. Figures

Figure 1: Evolution of home insurance premiums

The figure shows the evolution of home insurance premiums over time by FEMA risk category.
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Figure 2: Insurance premiums and coverage

The figure shows the relationship between home insurance premium and coverage in panel a and
mandatory charges and coverage in panel b.
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Figure 3: Claims and hurricane

The figure shows the evolution of claims/losses three years before and after a hurricane. We estimate
the following model:

Outcomep,c,t =
+3∑

t=−3

βt1t + αp,c + ϵp,c,t,

where the outcome variables include 1p,c,t, an indicator variable that equals 1 if a claim is filed
against policy p in treatment cohort c at event-time t, and log(1+ claim)p,c,t, which represents the
approved claim amount for policy p at event-time t. 1t denotes an indicator variable that equals
1 for a given event time and 0 otherwise. αp,j represents policy × cohort fixed effects. The figure
plots the estimated coefficients along with 95% confidence intervals, measured relative to three
years before the hurricane event. Standard errors are clustered at the county level.
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Figure 4: Premium and hurricane

The figure shows the evolution of home insurance premium and premium to coverage three years
before and after a hurricane. We estimate the following model:

Outcomep,c,t =
+3∑

t=−3

βt1t + αp,c + ϵp,c,t,

where the outcome variables include ∆log(Premium)p,c,t, which represents the growth rate in
premium for policy p in treatment cohort c at event-time t, and ∆log(Premium

coverage )p,c,t, which denotes
the corresponding growth rate of the premium-to-coverage ratio. 1t denotes an indicator variable
that equals 1 for a given event time and 0 otherwise. αp,j represents policy × cohort fixed effects.
The figure plots the estimated coefficients along with 95% confidence intervals, measured relative
to three years before the hurricane event. Standard errors are clustered at the county level.
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Figure 5: Mandatory charges and hurricane

The figure shows the evolution of mandatory charges and mandatory charges to coverage three
years before and after a hurricane. We estimate the following model:

Outcomep,c,t =
+3∑

t=−3

βt1t + αp,c + ϵp,c,t,

where the outcome variables include ∆log((Mandatorycharges)p,c,t, which represents the
growth rate in mandatory charges for policy p in treatment cohort c at event-time t, and
∆log(Mandatorycharges

coverage )p,c,t, which denotes the corresponding growth rate of the mandatory charges-
to-coverage ratio. αp,j represents policy × cohort fixed effects. 1t denotes an indicator variable
that equals 1 for a given event time and 0 otherwise. The figure plots the estimated coefficients
along with 95% confidence intervals, measured relative to three years before the hurricane event.
Standard errors are clustered at the county level.
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Figure 6: Claim rejection and hurricane

The figure shows the evolution of rejected claims three years before and after a hurricane. We
estimate the following model:

Outcomep,c,t =
+3∑

t=−3

βt1t + αp,c + ϵp,c,t,

where the outcome variables include Rejection rates, which represents the proportion of claims filed
against policy p in treatment cohort c at event-time t that were rejected, and 1p,c,t, an indicator
variable that equals 1 if a claim is filed against policy p at event-time t. 1t denotes an indicator
variable that equals 1 for a given event time and 0 otherwise. αp,j represents policy × cohort fixed
effects. The figure plots the estimated coefficients along with 95% confidence intervals, measured
relative to three years before the hurricane event. Standard errors are clustered at the county level.
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II. Tables

Table 1: Summary statistics

The table shows the summary statistics of policies in our sample.

Observations Mean StDev P10 P25 Median P75 P90

Premium 18677633 1748.64 1424.84 423.00 784.00 1400.00 2297.00 3469.00

Mandatory charges 18677633 99.33 147.89 15.00 29.00 60.00 111.00 205.00

Total (Premium + Mandatory charges) 18677633 1847.97 1514.11 449.00 829.00 1478.00 2426.00 3657.00

Premium to coverage 18568132 1.64 12.17 0.48 0.70 1.06 1.64 2.60

Mandatory charges to coverage 18568132 0.09 0.61 0.02 0.03 0.05 0.09 0.16

Claim Amount 18677633 747.38 8256.46 0.00 0.00 0.00 0.00 0.00

Claim to premium 18566864 0.46 5.19 0.00 0.00 0.00 0.00 0.00
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Table 2: Determinants of home insurance premium

The table examines the relation between home insurance premiums and house characteristics.

Standard errors are clustered at the policy-level, and are shown in parentheses. ***, **, and *

represent result significant at 1%, 5%, and 10% level, respectively.

ln(Premium) ln(Mandatory charges)

I II III IV V VI

ln(Coverage)p,t 0.537*** 0.565*** 0.403*** 0.561*** 0.632*** 0.403***

(0.000) (0.001) (0.001) (0.000) (0.001) (0.001)

Property Fixed Effects No Yes Yes No Yes Yes

Year Fixed Effects No No Yes No No Yes

Observations 18,457,390 17,423,880 17,423,880 18,457,390 17,423,880 17,423,880

R-squared 0.55 0.89 0.91 0.37 0.76 0.90
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Table 3: Claims

The table examines the impact of hurricanes on claim amount and probability of filing a claim.

log(1+Claim Amount)p,t is the amount of claim for the policy p that files a claim at event-time t

and 1(Claim) is an indicator value that takes the value of 1 for a policy p that files a claim at

event-time t and zero otherwise. Post is an indicator variable that takes on a value of one for

periods following a hurricane and zero otherwise. Treated is an indicator variable that takes a

value of one for policies in counties experiencing a hurricane and zero otherwise. Standard errors

are clustered at the county-level, and are shown in parentheses. ***, **, and * represent result

significant at 1%, 5%, and 10% level, respectively.

ln(1+Claim Amount) 1(Claim)

I II

Postt -0.136*** -0.016***

(0.043) (0.004)

Postt × Treatedp 0.378*** 0.041***

(0.098) (0.010)

Observations 13793212 13793171

R-squared .29 .29
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Table 4: Premium, Mandatory Charges, and Rejection Rate

The table examines the impact of hurricanes on premium, mandatory charges, and claim rejection rate. Post is an indicator variable

that takes on a value of one for periods following a hurricane and zero otherwise. Treated is an indicator variable that takes a value of

one for policies in counties experiencing a hurricane and zero otherwise. Standard errors are clustered at the county-level, and are shown

in parentheses. ***, **, and * represent result significant at 1%, 5%, and 10% level, respectively.

∆ln(Premium) ∆ln(Mandatory charges) ∆ln(Premium
Coverage

) ∆ln(Mandatory charges
Coverage

) Rejection Rate 1(Rejection)

I II III IV V VI

Postt 0.013 0.038 0.008 0.001 0.020* 0.015

(0.014) (0.051) (0.011) (0.002) (0.010) (0.010)

Postt × Treatedp 0.067*** 0.100 0.064*** 0.010*** -0.040*** -0.035***

(0.014) (0.060) (0.013) (0.001) (0.012) (0.013)

Observations 10,088,100 10,088,100 10,040,590 10,040,590 275,982 275,982

R-squared 0.29 0.18 0.27 0.17 0.50 0.50
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Table 5: Heterogeneity by Income

The table examines the impact of hurricanes on premiums, mandatory charges, and claim rejection rates in low-income and high-income

areas. Post is an indicator variable that takes on a value of one for periods following a hurricane and zero otherwise. Treated is an

indicator variable that takes a value of one for policies in counties experiencing a hurricane and zero otherwise. Standard errors are

clustered at the county-level, and are shown in parentheses. ***, **, and * represent result significant at 1%, 5%, and 10% level,

respectively.

Income Low Income High

∆ln(Premium) ∆ln(Mandatory charges) Rejection Rate ∆ln(Premium) ∆ln(Mandatory charges) Rejection Rate

I II III IV V VI

Postt -0.029* -0.090 0.039*** 0.040*** 0.125*** -0.008

(0.014) (0.062) (0.005) (0.009) (0.028) (0.018)

Postt × Treatedp 0.113*** 0.008 -0.047*** 0.036*** 0.119*** -0.037*

(0.016) (0.118) (0.012) (0.013) (0.043) (0.020)

Observations 4,300,618 4,300,618 165,993 5,602,322 5,602,322 98,961

R-squared 0.25 0.15 0.49 0.35 0.22 0.51
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Table 6: Heterogeneity by Private Market Surplus

The table examines the impact of hurricanes on premiums, mandatory charges, and claim rejection rates in periods with increasing and

decreasing surplus for private insurers in the region. Post is an indicator variable that takes on a value of one for periods following a

hurricane and zero otherwise. Treated is an indicator variable that takes a value of one for policies in counties experiencing a hurricane

and zero otherwise. Standard errors are clustered at the county-level, and are shown in parentheses. ***, **, and * represent result

significant at 1%, 5%, and 10% level, respectively.

Surplus Increasing Surplus Decreasing

∆ln(Premium) ∆ln(Mandatory charges) Rejection Rate ∆ln(Premium) ∆ln(Mandatory charges) Rejection Rate

I II III IV V VI

Postt -0.027 -0.094 0.039*** 0.058*** 0.188*** -0.008

(0.021) (0.075) (0.011) (0.007) (0.015) (0.013)

Postt × Treatedp 0.101*** -0.348*** -0.038*** 0.023** 0.104** -0.040**

(0.021) (0.077) (0.013) (0.011) (0.041) (0.019)

Observations 5,362,097 5,362,097 175,143 4,726,003 4,726,003 100,839

R-squared 0.27 0.15 0.50 0.31 0.25 0.51
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Table 7: Coverage, hurricane deductible, litigation, and appraisal rate

The table examines the impact of hurricanes on coverage, hurricane deductible, litigation, and

appraisal rate. Post is an indicator variable that takes on a value of one for periods following

a hurricane and zero otherwise. Treated is an indicator variable that takes a value of one for

policies in counties experiencing a hurricane and zero otherwise. Standard errors are clustered at

the county-level, and are shown in parentheses. ***, **, and * represent result significant at 1%,

5%, and 10% level, respectively.

∆ln(Coverage) ∆ln(Deductible) Litigation Rate Appraisal Rate

I II III IV

Postt 0.011** 0.010** 0.011 0.025

(0.004) (0.004) (0.013) (0.021)

Postt × Treatedp 0.021*** 0.018*** -0.002 0.030**

(0.006) (0.005) (0.004) (0.013)

Observations 10,040,590 8,898,157 275,982 275,982

R-squared 0.30 0.31 0.58 0.52
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Table 8: Coverage, hurricane deductible, litigation, and appraisal rate: Heterogeneity by Income

The table examines the impact of hurricanes on coverage, hurricane deductible, litigation, and appraisal rate in low-income and high-

income areas. Post is an indicator variable that takes on a value of one for periods following a hurricane and zero otherwise. Treated

is an indicator variable that takes a value of one for policies in counties experiencing a hurricane and zero otherwise. Standard errors

are clustered at the county-level, and are shown in parentheses. ***, **, and * represent result significant at 1%, 5%, and 10% level,

respectively.

Income Low Income High

∆ln(Coverage) ∆ln(Deductible) Litigation Rate Appraisal Rate ∆ln(Coverage) ∆ln(Deductible) Litigation Rate Appraisal Rate

I II III IV V VI VII VIII

Postt 0.001 -0.000 0.025** 0.042* 0.018*** 0.016*** -0.011 0.002

(0.004) (0.004) (0.012) (0.023) (0.003) (0.003) (0.007) (0.012)

Postt × Treatedp 0.038*** 0.035*** -0.004 0.015 0.011* 0.009*** -0.007 0.053***

(0.006) (0.007) (0.004) (0.013) (0.007) (0.004) (0.007) (0.011)

Observations 4,310,733 3,711,406 165,993 165,993 5,545,681 5,029,292 98,961 98,961

R-squared 0.29 0.30 0.57 0.52 0.31 0.33 0.60 0.52
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A. Model Proofs

A.1. Proof of Proposition 1

Proof of Spillovers We’ll start with the case of RK
t−1 ≥ 1. Clearly, F1(Kt, Kt−1) =

F (Kt, Kt−1) = 0, so the first order condition simply becomes H1(Pℓt, Vℓt) = 0. Therefore,

Pℓt = Vℓt is the solution for every ℓ ∈ L.

Next, consider the case where RK
t−1 < 1. First, we’ll establish the bounds on Pℓt.

Then we’ll show that Pℓt is in the interior of the two bounds for every ℓ. In this case,

F1(R
K
t−1Kt−1, Kt−1) < 0, so setting Pℓt = Vℓt clearly is not an optimum for any ℓ. Since the

first order condition is negative and both H(·, Vℓt) and F (·, Kt−1) are convex in their first

arguments, the optimal price must be larger than Vℓt.

On the other hand, suppose Pℓt = PM
ℓt = (1− ε−1

ℓt )
−1Vℓt for some ℓ. Note that

Qℓt + (PM
ℓt − Vℓt)

∂Qℓt

∂Pℓt

= Qℓt −
Vℓt

εℓt − 1
× εℓt

Pℓt

Qℓt = 0,

and therefore, the first order condition is H1(P
M
ℓt , Pℓt) > 0. Therefore, again due to the

convexity of H in its first argument, Pℓt < PM
ℓt must hold.

It remains to be established that Pℓt ∈ (Vℓt, P
M
ℓt ) for all ℓ. Suppose the contrary is true,

e.g. that there exists some ℓ such that Pℓt = Vℓt. Then since this is an optimum, it must be

that F1(Kt, Kt−1) = 0 since H1(Pℓt, Vℓt) = 0. But then for any other ℓ′ such that Pℓ′t > Vℓt,

the first order condition is H1(Pℓ′t, Vℓt) > 0, which contradicts the optimality of Pℓ′t. It

follows that Pℓt > Vℓt for all ℓ ∈ L. □

Proof that ∂Pℓt/∂P
M
ℓt > 0 The comparative statics also follow from the arguments

above. Consider two monopolistically competitive prices, PM,2
ℓt > PM,1

ℓt . Let P 1
ℓt denote

the optimal price given PM,1
ℓt . We need to show that P 2

ℓt > P 1
ℓt. To do so, note that

(Pℓt − Vℓt)Qℓt(Pℓt) is increasing for Pℓt < PM
ℓt . Therefore, Qℓt + (Pℓt − Vℓt)∂Qℓt/∂Pℓt is
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positive for Pℓt < PM
ℓt . Further, since operating profits are concave, it must also be true that

Q1
ℓt + (P 1

ℓt − Vℓt)
∂Q1

ℓt

∂Pℓt

< Q2
ℓt + (P 1

ℓt − Vℓt)
∂Q2

ℓt

∂Pℓt

since |P 1
ℓt − PM,1

ℓt | < |P 1
ℓt − PM,2

ℓt |. It therefore must be that

0 = H1(P
1
ℓt, Vℓt) + F1

[
Q1

ℓt + (P 1
ℓt − Vℓt)

∂Q1
ℓt

∂Pℓt

]
> H1(P

1
ℓt, Vℓt) + F1

[
Q2

ℓt + (P 1
ℓt − Vℓt)

∂Q2
ℓt

∂Pℓt

]
.

Hence, since H1 is increasing in Pℓt and Qℓt + (Pℓt − Vℓt)∂Qℓt/∂Pℓt is decreasing in Pℓt, it

must be that P 2
ℓt > P 1

ℓt. This proves the claim. □

A.2. Proof of Proposition 2

From the first order condition (5) and from the functional form for Qℓt, we can write

CℓtQℓt−1 + (Pℓt − Vℓt)Nℓtqℓt(Pℓt)f
′(χℓt) = 0.

Solving for χℓt, we come to the expression

χℓt = (−f ′)−1

(
CℓtQℓt−1

(Pℓt − Vℓt)qℓt(Pℓt)Nℓt

)

as claimed. For notational convenience, we let g = (−f ′)−1. Since f is strictly concave, −f

is strictly convex, so −f ′ is strictly increasing. It follows then that g is strictly increasing as

well. From Proposition 1, we know that Pℓt is increasing in the monopolistically competitive

price, so holding fixed Vℓt this implies that (Pℓt − Vℓt)qℓt(Pℓt) is increasing in Pℓt. As such,

for a given level of losses, CℓtQℓt−1, χℓt is decreasing in PM
ℓt . □
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A.3. Proof of Proposition 3

From Proposition 1, we know that Pℓt > Vℓt for both locations. Further, since RK
t−1 < 1, we

know that F1(Kt, Kt−1) < 0. Suppose by way of contradiction that P2t ≤ P1t. Note that we

can write the first order condition for each location as

H1(P1t, Vt)

Q1t

(
1− Pℓt − Vℓt

Pℓt

εℓt

) = −F1(Kt, Kt−1)

Since the right-hand side is common across locations, equating them for locations 1 and 2

then implies

(C.1)
H1(P1t, Vt)

H1(P2t, Vt)
=

Q1t

(
1− P1t − Vt

P1t

ε1t

)

Q2t

(
1− P2t − Vt

P2t

ε2t

)

Since H1 is convex in its first argument, it follows that the left-hand side of (C.1) is greater

than or equal to 1 given our assumption that P1t ≥ P2t. On the other hand, note that

Q1t ≤ Q2t since

log
Q1t(P1t)

Q2t(P2t)
≤ log

Q1t(P2t)

Q2t(P2t)
< log

Q1t(Vt)

Q2t(Vt)
= 0,

where the first inequality follows since demand curves are decreasing in the premium rate,

and the second inequality follows from the fact that log(Q1t(P )/Q2t(P )) is decreasing for all
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P . It also true that 1− Vt/P1t > 1− Vt/P2t, so therefore,

−

(
1− Vt

P1t

)
≤ −

(
1− Vt

P2t

)

⇐⇒ −

(
1− Vt

P1t

)
ε1t < −

(
1− Vt

P2t

)
ε2t

⇐⇒ 1−

(
1− Vt

P1t

)
ε1t < 1−

(
1− Vt

P2t

)
ε2t.

Therefore, it follows that the right-hand side of (C.1) is strictly less than 1, which is a

contradiction. We therefore conclude that P1t < P2t. □

A.4. Proof of Proposition 4

This proof follows the steps of Proposition 2, noting that the more elastic location has lower

levels of profitability. All else equal, this implies that χ1t > χ2t. □

54



B. Additional Figures and Tables

Figure B.1: Policies by FEMA risk

The figure shows the geographical distribution of policies by FEMA risk category
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Table B.1: Average premium by company in Florida

This table shows the average premium charged by companies for a Florida masonry home built in

2005, with a current replacement value of $300,000, a 2% hurricane deductible, a $500 non-hurricane
deductible, no claims in the past three years, and minimum premium discounts for limited wind

mitigation features and no hip roof.

Company Average Premium ($)

STILLWATER PROPERTY AND CASUALTY INSURANCE COMPANY 1601.87

TOWER HILL PRIME INSURANCE COMPANY 2169.94

TOWER HILL PREFERRED INSURANCE COMPANY 2302.63

CASTLE KEY INDEMNITY COMPANY 2618.18

FIRST PROTECTIVE INSURANCE COMPANY 2802.78

CITIZENS PROPERTY INSURANCE CORPORATION 3595.43

STATE FARM FLORIDA INSURANCE COMPANY 3783.90

FIRST COMMUNITY INSURANCE COMPANY 3800.00

ASI PREFERRED INSURANCE CORP 3861.19

UNIVERSAL PROPERTY & CASUALTY INSURANCE COMPANY 4034.72

LIBERTY MUTUAL FIRE INSURANCE COMPANY 4143.36

PEOPLE’S TRUST INSURANCE COMPANY 4505.46

FLORIDA FARM BUREAU CASUALTY INSURANCE COMPANY 4809.79

SOUTHERN OAK INSURANCE COMPANY 6162.97

SECURITY FIRST INSURANCE COMPANY 6210.99

AUTO CLUB INSURANCE COMPANY OF FLORIDA 8067.87

Source: Florida Office of Insurance Regulation
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Table B.2: List of hurricane events

This table lists the hurricane events that took place during our sample period. The hurricane events

are identified using Spatial Hazard Events and Losses Database for the United States (SHELDUS)

dataset.

Year Month Hurricane/Tropical Storm # Counties Impacted

2004 Aug Charley 8

2004 Sep Ivan, Frances, and Jeanne 30

2005 Jul Dennis 10

2005 Aug Katrina 4

2005 Oct Wilma 5

2008 Aug Fay 5

2008 Sep Ike 1

2012 Aug Isaac 1

2016 Sep Hermine 2

2016 Oct Matthew 7

2017 Sep Irma 29

2018 Oct Michael 10

2019 Sep Dorian 1

2020 Sep Sally 2

2022 Sep Ian 8

2022 Nov Nicole 2
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Table B.3: Premium, Mandatory Charges, and Rejection Rate: All counties as control

The table examines the impact of hurricanes on premium, mandatory charges, and claim rejection rate for a sample that includes all

counties. Post is an indicator variable that takes on a value of one for periods following a hurricane and zero otherwise. Treated is an

indicator variable that takes a value of one for policies in counties experiencing a hurricane with property damage above the median

value and zero otherwise. Standard errors are clustered at the county-level, and are shown in parentheses. ***, **, and * represent result

significant at 1%, 5%, and 10% level, respectively.

∆ln(Premium) ∆ln(Mandatory charges) ∆(Premium/Coverage) ∆(Mandatory charges/Coverage) Rejection Rate 1(Rejection)

I II III IV V VI

Postt 0.017*** 0.123*** 0.026*** 0.010*** 0.029*** 0.025***

(0.006) (0.010) (0.008) (0.001) (0.005) (0.005)

Postt × Treatedp 0.062*** 0.015 0.046*** 0.001 -0.049*** -0.045**

(0.016) (0.108) (0.013) (0.001) (0.017) (0.018)

Observations 25,610,765 25,610,765 25,683,055 25,683,055 581,836 581,836

R-squared 0.30 0.20 0.28 0.25 0.52 0.51
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